
Abstract
Complex networks provide a suitable framework to characterize air 
traffic. Previous works described the world air-transport network as a 
graph where direct flights are edges and commercial airports are vertices. 
In this work, we focus instead on the properties of flight delays in the US 
air-transportation network. We analyze flight performance data in 2010 and 
study the topological structure of the network as well as the aircraft rotation. 
The properties of flight delays, including the distribution of total delays, 
the dependence on the day of the week and the hour-by-hour evolution 
within each day, are characterized with special attention to flights accumu-
lating delays longer than 12 hours. We find that the distributions are robust 
to changes in takeoff or landing operations, different moments of the year, 
or even different airports in the contiguous states. However, airports in 
remote areas (Hawaii, Alaska, Puerto Rico) can show peculiar distributions 
biased toward long delays. Additionally, we show that long-delayed flights 
have an important dependence on the destination airport.
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Introduction
The generation, propagation, and eventual amplification of flight delays 
involve a large number of interacting mechanisms. Such mechanisms 
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can be classified as internal or external to the air-traffic system. The basic 
internal mechanisms include aircraft rotations (the different flight legs 
that comprise an aircraft itinerary), airport operations, passengers’ con-
nections, and crew rotation. In addition, external factors, such as weather 
perturbations or security threats, disturb the system performance and con-
tribute to a high level of system-wide congestion. The intricacy of the inter-
actions among all these elements calls for an analysis of flight delays under 
the scope of Complex Systems theory. Complexity is concerned with the 
emergence of collective behavior from the microscopic interaction of the 
system elements. Several tools have been developed to tackle complexity. 
Here we use Complex Networks theory and take a system-wide perspective 
to broaden the understanding of delay propagation. A network is a math-
ematical abstraction that represents systems of interacting entities as ver-
tices (nodes) connected by edges (links) (see, for instance, Bocaletti et al. 
2006, Newman 2010, or Barrat, Barthélemy, and Vespignani 2012 for recent 
reviews). Given the natural networked structure of the air-traffic system, 
we analyze the air-transport network formed by nodes representing air-
ports and edges direct flights between them. The nature of such networks is 
highly dynamical since a different instance exists at every moment in time.

In this work we are interested in characterizing delays and how they 
may be transferred and amplified by subsequent operations, the so-called 
reactionary delays. Naturally reactionary delays spread across the network, 
so an understanding of the topological features of the air-transportation 
network, the properties of aircraft rotations, and the statistical features 
of flight delays is of great significance for subsequent modeling efforts 
(Fleurquin, Ramasco, and Eguíluz 2013a).

The remainder of the article is organized as follows. The next section 
provides a background review of the literature on complex networks, 
focusing on air transportation. Then, the used database is described, 
followed by the presentation of results on the characterization of the US 
air-transportation network, flight trajectories, and flight delays. Finally, we 
summarize our findings and point to further research questions.

Background
The use of network analysis to characterize complex systems has become 
widespread in the last two decades. The potential of graphs for describ-
ing social systems was pointed out almost a century ago (see Freeman 
2004 for a review). However, the generalization of these concepts and 
tools had to wait much longer until the seminal works by Watts and 
Strogatz (1998), and Barabási and Albert (1999). Ever since, complex 
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networks have been applied in a growing range of disciplines such as 
technology (Huberman et al. 1998), biology (Jeong et al. 2001), and econ-
omy (Mantegna and Stanley 2007).

The application of network theory to air transportation has a much 
shorter history, for which the first results were published in 2004 and 
2005. The world air-transportation network is described as a graph formed 
with the passenger commercial airports as vertices and the direct flights 
between airports as edges (Barrat, Pastor-Satorras, and Vespignani 2004; 
Guimera, Sales-Pardo, and Amaral 2005), with a weight corresponding to 
the number of seats available in the connection. The main source of this 
database is the International Air Transport Association (IATA; http://www 
.iata.org), while some other studies have presented data from the US Bureau 
of Transport Statistics (BTS) or from OAG (http://www.oag.com). The initial 
work by Barrat, Pastor-Satorras, and Vespignani (2004) focused on the cor-
relations between network topology and fluxes of passengers in finding a 
nonlinear relation between them: w k kij i j )(=  where wij is the number of 
seats available in the connection between airports i and j; ki is the number 
of connections with other airports of airport I; and q is a parameter whose 
value was estimated to be approximately ½. A second study by Guimera, 
Sales-Pardo, and Amaral (2005) included a network description and ana-
lyzed the degree (number of connections per node) and node strength (sum 
over the weights of the connections of a node) distributions, degree-degree 
correlations, density of triangles, and so on. The world air-transportation 
network was analyzed later with graph clustering techniques (Sales-Pardo 
et al. 2007) to classify airports according to their connectivity patterns. The 
seasonal evolution of the connectivity patterns in the US airports networks 
have also been investigated in Gautreau, Barrat, and Barthelemy (2009) and 
Pan and Saramaki (2011). The authors characterize along the year how the 
network connectivity varies, with more routes available in summer, as 
well as how the passenger fluxes modify. Recently, information on human 
mobility through the air-transportation network has also been used to 
model and forecast the propagation pathways of infectious diseases trans-
mitted by contact such as influenza (Balcan, Colizza, et al. 2009; Balcan, Hu, 
et al. 2009).

Within the air-traffic management (ATM) community, even if 
reactionary delays can have a great impact on air-traffic performance 
(EUROCONTROL 2008–2011; ICCSAI Fact Books 2007–2011; Joint Economic 
Committee 2008), the research effort to understand delay propagation has 
been scarce so far, and mostly limited to a descriptive work (Ahmadbeygi 
et al. 2008; Beatty et al. 1999; Schaefer et al. 2001). A good review of previous 
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work on delay propagation can be found in Belobaba, Odoni, and Barnhart 
2009 and Jetzki 2009. Some research efforts have begun to apply network 
theory (Bonnefoy and Hansman 2007; Wuellner, Roy, and D’Souza 2010) in 
combination with stochastic modeling (Janić 2005; Rosenberger et al. 2002) 
to the modeling of delay propagation (Bonnefoy and Hansman 2005; 
EPISODE 3 2009; Pyrgiotis, Malone, and Odoni 2013).

Data and Method
Data was obtained from the Airline On-Time Performance Data available 
at the US Bureau of Transportation Statistics webpage (http://www.bts.
gov). This database provides information such as schedule and actual 
departure and arrival times, departure and arrival delays, origin and 
destination airports, taxi-in and taxi-out times, airline ID, tail number 
and flight date. Air carriers that exceed 1 percent of the total domestic 
scheduled-service passenger revenue report on-time data and the causes 
of delay.

We restricted our analysis to domestic flights conducted in the year 
2010. Despite the fact that these data are two years old, no major changes 
concerning on-time performance has occurred since then. For the year 
2010, 18 air carriers filed on-time performance data that represents a total 
of 6,450,129 flights from 305 airports. From this database 1.75 percent of 
the flights were canceled and 0.2 percent diverted. All scheduled domestic 
flights for the year 2010 (not only those from On-Time Performance Data) 
total 8,687,800 (Bureau of Transportation Statistics 2011); therefore, the 
data used represent 74 percent of all scheduled flights in 2010.

Results
Characterizing the United States Air-Transportation Network

The resulting air-transportation network is composed of 305 nodes denot-
ing airports, and 2,318 edges accounting for direct connections between 
them (fig. 1). Airports are sized according to the logarithm of their average 
delay per flight. Even though the network is not completely bidirectional, 
for instance, there can be flights from A to B but not from B to A, most con-
nections bear flights in the two directions. For example, we find that if we 
build daily networks with the flight information, 98 percent of the overall 
connections are bidirectional. Furthermore, the lowest percentage of bidi-
rectional links measured in a daily network is 92 percent. Small airports are 
responsible for these minor anomalies. To simplify the analysis we sym-
metrized the network.
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As in the previous works, we define the degree of an airport as the 
number of different connections (airports of origin or destination of flights 
connecting with it). We can then calculate a degree distribution, taking 
into account the degrees or the number of flights of the airports across 
the network, and integrate it to obtain a cumulative distribution FX(x). For  
each value of x, the corresponding cumulative distribution tells us which 
fraction of airports with degree (number of flights) is lower than or equal  
to x. In figure 2, we show the complementary cumulative distribution of the 
degree and of the number of flights 1–FX(x). Both distributions are wide and 
demonstrate the heterogeneities present in the network. Some few airports 
are large hubs with a large number of connections and flights, while most 
others have low traffic. These topological characteristics are well known for 
this network, but still are relevant for the dynamics of delay propagation.

Table 1 shows the ranking of the top-10 airports based on the number 
of different destinations (degree) and displays also the number of flights. 
The largest hub in the network is Atlanta International Airport (ATL) 
with 159 direct connections and the average degree of the whole network 
of 15.2.

Flight Trajectories

An important ingredient to characterize the propagation of reactionary 
delays is the rotation of the aircrafts. The database contains the tail number 
of the planes, which allows us to track their movements throughout the day. 
In figure 3, we show the percentage of aircrafts taking a certain number of 

Figure 1 US Air Transport Network in 2010
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leaps per day. It can be seen that 80 percent of trajectories are composed of a 
number of leaps between two and seven. Very few planes do longer rotations 
due to the constraint of daily time periods and the duration of the flights.

Within a day, some of the aircraft trajectories are closed walks, that is, 
a sequence of airports starting and ending at the same airport, but most of 
the aircraft trajectories do not close at the end of the day. In figure 4 we show 
the percentage of closed walks per day during 2010. We can conclude that 
these trajectories are a small percentage with respect to the total number 
of aircraft rotations. This finding does not mean that the trajectories will 
not close taking into account the longer periods of time (weeks, months, 
or years).

Figure 2 Complementary Cumulative Distribution of the Degree

Airport Number of Flights Degree

ATL: Hartsfield-Jackson Atlanta Interna-
tional Airport

809,869 159

ORD: Chicago O'Hare International 
Airport

608,981 147

DFW: Dallas/Fort Worth Interntional 
Airport

524,206 140

DTW: Detroit Metropolitan Wayne 
County Airport

314,369 128

DEN: Denver International Airport 470,592 125

MSP: Minneapolis-Saint Paul Interna-
tional Airport

246,416 116

IAH: George Bush Intercontinental 
Airport

362,562 107

SLC: Salt Lake City International Airport 246,245 94

MEM: Memphis International Airport 152,730 86

MCO: Orlando International Airport 241,851 83

Table 1/Top-10 Airports Ranked according to the Number of Connections to 

Other Airports
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Regarding the previous result, another way of classifying the airports 
(besides connectivity) is by the fraction of closed walks that starts in each 
airport. These airports are not necessarily the ones with highest degree 
(see fig. 5). Assuming that the airline hubs (airlines’ centers of operations) 
are those airports with a larger percentage of closed rotations, we can 
conclude that the network hubs (nodes with highest degree) do not always 
coincide with the airlines hubs.

Figure 3 Percentage of Daily Aircraft Trajectories with 

Given Number of Leaps

Figure 4 Percentage of Closed Walks
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Flight Delay Characterization

We have described the topology of the network and the rotation of the 
flights. The next step is to focus on the real data regarding flight delays. 
We plot in figure 6 the complementary cumulative distribution of depar-
ture and arrival delays for all flights of 2010, 1–FX(x) First, we notice that just 
like the degree and flight distribution, the delay distribution is broad with 
a slight hump at values of the delay around and larger than 700 minutes. 
Second, we find that there is no significant difference for both types of 
delays (arrival and departure delays), the day of the week or the season of the 
year (fig. 7). The cumulative distribution for different airports (fig. 8) shows 
a broad variety of behaviors. Displayed in the figure are a remote airport 
from the mainland like Honolulu International Airport (HNL), and two 
continental hubs, namely Dallas/Fort Worth International Airport (DFW) 
and Denver International Airport (DEN). We can see that, unlike HNL, 
DFW and DEN still show a slight hump in the distribution. On the other 
hand, Honolulu displays a broader distribution. This is probably due to the 
longer duration of the flights with destination or origin in HNL that allows 
for an easier absorption of short delays. The delays in the islands can be, 
therefore, much larger than those in the continent, and as a consequence 
the distribution becomes more skewed.

In order to understand the nature of the hump in the delay distri-
butions, we extract the flights with departure delay above 12 hours and 

Figure 5 Percentage of Daily Aircraft Trajectories Ending at 

an Airport as a Function of the Airport Degree
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Figure 6 Complementary Cumulative Distribution Function 

of Departure and Arrival Delays in 2010

Figure 7 Complementary Cumulative Distribution Function of Departure 

Delays in 2010

compare them with all the flights of 2010. Plotting the departure delay 
as a function of the scheduled departure time we can distinguish how 
flights with delay greater than 12 hours are more abundant than the base-
line at the beginning and at the end of the day (see fig. 9a). The opposite 
behavior can be observed for flights with departure delay below 12 hours, 
which show an almost flat delay distribution. Regarding this point, we 
plotted the delay distribution for flights with different scheduled depar-
ture times in figure 9b. The hump becomes more evident in the distribu-
tion of flights departing between 00am and 5am, and between 1pm and 
11:59pm (local  times) indicating a relatively higher abundance of long 
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delayed  flights. Note that even so, the fraction of delay flights is small 
compared with the total.

Another feature of long-delayed flights is their strong dependence on 
the destination airport. In table 2, we compare the data for long-delayed 
flights with two sets of randomly selected flights: one among all flights 
(delayed or not) and the other only with delayed flights. From the data 
51 airports (16%) are the destinations of 414 delayed flights. If the 414 flights 
are randomly chosen, the number of destination airport increases to 
120 (more than double the results from the real data) regardless of how the 
flights were chosen. This means that a bias exists toward a smaller set of 
destination airports. Note that the same phenomenon is not observed for 
the departure airports that are in the same range both in the data and in 

Figure 9 Fraction of Departures as a Function of the Scheduled  

Departure Hour

Figure 8 Complementary Cumulative Distribution of the 

Departure Delays in 2010 (Black Circles), and Single Airports
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the randomly selected flights. Other variables such as days, tail-number, or 
air carriers remain the same. In figure 10, we plotted the number of flights 
with long delays versus the ranking of destination airport with respect to 
the number of long-delayed flights. The data correspond to the gray bars, 
while the randomly selected set of flights is the black curve. In the data, 

Figure 10 Ranking of the Number of Flights Delayed 12 hours 

or Longer for the 51 Destination Airport from the Data (Blue 

Bars) and the Randomly Selected Airports (Red Line)

Flights Origin Destination Days Tail AR_ID

With problem 414 118 51 226 346 14

Total 6,341,340 305 305 365 5,081 18

Percentage 0.01% 38.00% 16.00% 62.00% 7.00% 77.00%

Randomly Chosen 
414 Flights

With problem 414 114 120 248 392 18

Total 6,341,340 305 305 365 5,081 18

Percentage 0.01% 38.00% 39.00% 67.00% 8.00% 100.00%

Randomly Chosen 
414 Flights 
Delayed

With problem 414 112 120 246 383 18

Total 6,341,340 305 305 365 5,081 18

Percentage 0.01% 36.00% 39.00% 67.00% 7.00% 100.00%

Table 2/Flights with Departure Delay Higher than or Equal to 12 Hours
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the first eight airports are destination of 75 percent of the long-delayed 
flights, while in the randomly selected set the first eight airports total only 
52 percent.

The significance of the destination airports could be related to Ground 
Delay Program (GDP) instituted by the US Federal Aviation Administration 
(FAA; see http://www.fly.faa.gov/Products/AIS_ORIGINAL/shortmessage 
.html). This program is implemented to control air-traffic volume to 
airports where the estimated demand is expected to surpass the airport 
arrival rate. When a GDP is issued, flights destined to the affected airport 
are not permitted to depart before their controlled departure time.

Conclusion
In summary, we have analyzed the characteristics of the US air-
transportation network with a focus on flight delays. The air-transportation 
network is built by connecting pairs of airports if they have a direct flight. 
We studied the network topological properties such as the distribution of 
the number of flights or the number of connections per airport. These fea-
tures show the broad heterogeneity of the air-transport network in accor-
dance with previous works. In addition to the topology, we consider the 
properties of the aircraft rotation throughout the day and the character-
istics of the delays. The aircraft rotation shows a complicated and highly 
heterogeneous profile. Some aircrafts itineraries are essentially round trips 
while others do not close in a simple periodic way. The heterogeneity of 
the rotation procedures can play an important role in the development and 
propagation of delays.

Regarding the delays, we show that the delay distributions show long 
decays both for arrival and departure delays, irrespective of the day of the 
week and season. Long tails are usually indicative of the complex nature of 
the mechanisms contributing to the propagation of delays. In this case, the 
system is not necessarily working under critical conditions but the com-
bined action of several factors, such as connecting passengers or crew, a 
predetermined schedule, and the geographical distance of the airports, can 
contribute to reach a similar system state at a global level. Whether the air-
transport network is a system at criticality is an open question that deserves 
further research. We study also the properties of the flights with a delay lon-
ger than 12 hours, showing a relative concentration of long-delayed flights 
early in the morning or late in the afternoon. The destination airport seems 
to be a key player for the surge of flights with long delay.

These results are relevant in order to better characterize flight delays 
from a statistical perspective. Subsequent efforts aimed at modeling 
delay spreading in the air-transport networks, such as the recent works by 
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Fleurquin, Ramasco, and Eguíluz (2013a, 2013b), should have into account 
the statistical patterns described here both in the model development and 
validation.
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