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Abstract. – We study numerically the out-of-equilibrium dynamics of interfaces at finite tem-
peratures when driven well below the zero-temperature depinning threshold. We go further than
previous analysis by including the most relevant non-equilibrium correction to the elastic Hamil-
tonian. We find that the relaxation dynamics towards the steady state shows glassy behaviour,
aging and violation of the fluctuation-dissipation theorem. The interface roughness exponent
α ≈ 0.7 is found to be robust to temperature changes. We also study the instantaneous velocity
signal in the low-temperature regime and find long-range temporal correlations. We argue that
1/f -noise arises from the merging of local temperature-induced avalanches of depinning events.

Introduction. – The dynamics of interfaces in random media has received much attention,
both theoretical and experimental, in the last decade. This is largely due to the interest that
driven interfaces have as models for nonlinear cooperative transport in many contexts, such
as stochastic surface growth and kinetic roughening [1], magnetic flux lines in type-II super-
conductors [2], the motion of charge density waves [3], propagation of fracture cracks [4], fluid
imbibition in porous media [5], etc. The competition between elastic interactions and quenched
disorder leads to a rich behaviour, which is not yet fully understood. A key macroscopic ob-
servable to look at is the average interface velocity v as a function of the external driving
force f . At zero temperature, quenched disorder tends to pin the interface and this leads to
a depinning transition from a pinned phase (v = 0) to a moving phase (v > 0) at a critical
value of the external driving force fc. However, one particularly important question is how the
system responds to this external forcing in the presence of non-negligible thermal fluctuations.

At finite temperatures, when the interface is driven well below the zero-temperature
critical force fc(T = 0), the interface velocity v is extremely small. The interface then moves
in bursts of activity and its dynamics exhibits glassy properties in a regime that is known
as creeping [6]. Experiments [7] and theoretical studies [8] have confirmed the existence
of glassy behaviour in the creeping regime. Theoretical approaches to this problem using
mean-field or functional renormalization group techniques [9–13] are usually valid in high
dimensions and difficult to extend to one-dimensional interfaces. More importantly, these
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approaches treat the dynamics of an elastic string in a random potential, i.e. interaction
terms derive from an elastic energy H = (ν/2)

∫
dx[

√
(∇h)2 + 1 + Φp(x, h)] in a random

pinning potential Φp in the small-slopes limit |∇h| � 1. However, the elastic line approach
gives a roughness exponent α ≈ 1.2 at the depinning transition, which leads to difficulties
in the thermodynamic limit since interface fluctuations 〈[h(x) − h(x)]2〉 ∼ L2α diverge and,
indeed, the small-slopes approximation breaks down [14,15].

Recent theoretical arguments have pointed out that a Kardar-Parisi-Zhang (KPZ) nonlin-
earity [16] may emerge from anisotropy of the disorder [17] and/or from higher-order terms in
an elastic expansion [14, 15]. Also, recent developments in imaging technology have allowed
to directly visualize the boundary between the vortex-invaded and the vortex-free (Meissner)
regions in superconductors. In a series of nice experiments, Surdeanu et al. [18] measured
the temporal and spatial correlations of these fronts for a YBa2Cu3O7−x superconductor.
They reported interfaces that exhibited scale-invariant kinetic roughening with exponents
consistent with KPZ dynamics. Similar results were later obtained in ref. [19] for thin Nb su-
perconductor films. These theoretical and experimental results make evident the importance
of understanding the effect of thermal fluctuations on pinned interfaces when the interaction
between degrees of freedom contains nonequilibrium contributions, like the KPZ nonlinearity.

In this letter we study the relaxation towards the steady state of an interface locally pinned
by a disordered background. Our study includes the most relevant KPZ non-equilibrium
correction to the elastic energy. We focus on the interface dynamics well below the depinning
transition, when only temperature can locally detach the interface from the quenched disorder.
We find that the system very slowly relaxes to a steady state showing sudden bursts of activity
in a creeping-like behaviour. During the relaxation regime the system exhibits aging and
violation of the fluctuation-dissipation theorem. The roughness exponent of the string is
found to be α ≈ 0.7 at short scales and robust to changes in temperature. Remarkably, the
instantaneous velocity signal exhibits long-range temporal correlations. We argue 1/f -noise
arises from the merging of local temperature-induced avalanches of depinning events.

We consider a 1D line described by a single-valued function h(x, t), giving the transversal
position h of the front from the h = 0 axis at time t. The front is moving through a heteroge-
neous medium, which can be described by a quenched disorder η(x, h) and the interface obeys
the equation of motion

∂th = ν∇2h + λ (∇h)2 +
√
T ξ(x, t) + σ η(x, h) + f, (1)

where ξ(x, t) is a Gaussian white noise with zero mean and unit variance describing the
thermal fluctuations at temperature T , ν is the elastic constant, and the KPZ nonlinearity
λ (∇h)2 gives the most relevant non-equilibrium correction to the equilibrium elastic energy.
We only consider here the case of non-correlated Gaussian disorder so that 〈η(x, y)η(x′, y′) =
δ(x− x′) δ(y − y′) and 〈η(x, y)〉 = 0.

Interface scaling. – We have carried out extensive numerical simulations of the Langevin
equation of motion (1). To solve (1) numerically we discretized h(x, t) along the x direction
with lattice spacing ∆x = 1 and used a stochastic Euler scheme to integrate the equation
of motion with periodic boundary conditions. The constants ν and σ can be scaled out and
without loss of generality we have set ν = σ = 1. All the results reported in the following were
obtained for an integration time step ∆t = 0.01, which was enough to guaranty stability of
the numerical scheme and ∆t-independence of the numerical results. We are interested in the
fully nonlinear regime, thus, for the system sizes we used (up to L = 2048), the strength of
the nonlinear term is set to λ = 1. Our results do not depend on λ, as far as it is large enough
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Fig. 1 – (Color online) a) Average height as a function of time for the nonlinear equation. The different
curves correspond from bottom to top to the temperatures T = 0, 0.01, 0.04, 0.16 and 0.64. In the
inset, the spatial power spectra of the interfaces for the three lowest temperatures (colors match in
both graphs). The dashed lines have slope 1 in the main plot and slope −(2α + 1) = −2.4 in the
inset. Panel b) shows the stationary velocity vs. temperature.

to allow the nonlinearity to fully operate well before saturation is reached. For comparison
we have also studied the usual elastic regime for λ = 0.

Simulations at T = 0 revealed that the depinning transition takes place at fc(T = 0, λ =
1) = 0.359 ± 0.002 and fc(T = 0, λ = 0) = 0.987 ± 0.002 for the nonlinear and linear models,
respectively. A more precise determination of the critical thresholds is not required since we
are interested in the dynamics of the system well below the critical point. In the following,
unless otherwise stated, we will always be driving the system with external forces f(λ = 1) = 0
and f(λ = 0) = 0.1, well below the critical threshold. We now focus on the effects of varying
the external temperature T when the system is in the zero-temperature pinned phase.

We always start our simulation with a flat interface h = 0 and then let the system evolve at
a given temperature T . We monitor the average height 〈h〉 from which the interface velocity
can be obtained in the long-times limit v ≡ limt→∞〈h〉/t.

Initially, as may be seen in fig. 1, the front advances relatively fast. The interface moves
through the quenched disorder and progressively gets locally trapped at more and more pin-
ning sites. The duration of this transient is system size independent and relatively short. After
that initial outburst, the interface begins relaxation towards the steady state. The latter is
characterized by a constant velocity. The time span of the relaxation process strongly depends
on temperature, increasing very dramatically at low T . During relaxation, the average height
displays a nonlinear growth in time, 〈h〉 ∼ tγ(T ), characteristic of the creeping regime. The
actual value of γ(T ) decays rapidly with decreasing T . Indeed, the average height increase is
compatible with logarithmic growth for very low T .

This singular dynamics of the average height during the creeping regime imposes a con-
strain upon the evolution of the interface width. Since w(t, L) ∼ tα/z cannot grow faster than
the height 〈h〉 ∼ tγ , we have α/z ≤ γ(T ). Simulations show that the value of the roughness
exponent α ≈ 0.7 remains essentially constant at low temperatures. This value is quite dif-
ferent from the roughness exponent obtained for the driven linear model (α ∼ 1.26 [14]) and
is closer to that observed experimentally in vortex fronts [18, 19]. In the inset of fig. 1 we
plot the structure factor S(k, t) = 〈ĥ(k, t)ĥ(−k, t)〉 at long times t = 104 for three different
temperatures T = 0, 0.01 and 0.04 (where ĥ is the Fourier transform of the interface height
in a system of lateral size L, with k being the spatial frequency in reciprocal space). The
inset clearly shows that i) after long times 104 the interface has not yet reached a steady
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Fig. 2 – (Color online) Connected correlation as a function of the time difference t − tw. The main
graph is for the nonlinear equation at T = 0.04 and tw = 250, 500, 1000 and 2000 from left to right.
In the inset, the same plot but for the linear equation, at T = 0.49 and the same set of tw values.

state, ii) the interface is scale invariant S(k, t) ∼ k−(2α+1) at short scales k � t−1/z, and
iii) the roughness exponent α does not depend on temperature. This in turn implies that the
dynamic exponent is changing with T (note that α/z ≤ γ(T )). This effect has been predicted
in ref. [12] where z grows as z ∼ 1/T for the linear model (λ = 0) when T goes to zero.

Aging. – Ultra-slow relaxation towards the steady state indicates typical out-of-
equilibrium glassy features in the system, in particular the existence of aging —namely, the
breakdown of the time translation invariance symmetry [9, 20,21]. In order to study aging in
our system we compute the two-times connected correlation function

Γ(t, tw) = 〈[h(x, t) − 〈h〉(t)] [h(x, tw) − 〈h〉(tw)]〉. (2)

If the system ages, Γ(t, tw) must be a function of both t and tw, and not only of their difference
t − tw. We follow the standard procedure, which closely mimics what can be done in real
experiments. The interface is evolved at some very high fixed temperature (we typically used
T = 4 for the nonlinear equation and T = 36 for the linear case) to anneal the system until
the stationary state is reached. Then, when the system is in the steady state, the temperature
is suddenly decreased to the desired measuring level T . This sets up the system out of the
stationary state and the time counter is started, t = 0, at the freezing event. We then monitor
the relaxation dynamics by measuring Γ(t, tw). Typical Γ(t, tw) curves for a set of waiting
times tw are shown in fig. 2 for temperature values T = 0.04 and 0.49 for the nonlinear
and linear cases, respectively. Both the nonlinear and the linear equations show clear aging
similarly to other glassy systems.

Fluctuation-dissipation violation. – Another important aspect of glassy dynamics is the
way in which the fluctuation-dissipation relation is broken. At equilibrium, the susceptibility is
linearly related to the spatial correlations of the conjugated variable. A modification for slowly
evolving out-of-equilibrium systems has been recently proposed by Cugliandolo, Kurchan and
Peliti [21], through the generalized response function

R(t, tw) =
X[Γ]
T

∂Γ(t, tw)
∂tw

, (3)
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Fig. 3 – (Color online) Parametric representation of the susceptibility as a function of the connected
correlations for the nonlinear model with T = 0.01 (black curves) and 0.02 (red ones). The waiting
times in both cases are tw = 500 (circles) and tw = 1000 (squares).

where R(t, tw) = 〈δh(x, t)/δf(x, tw)〉, i.e., the response of the conjugated variable (the inter-
face height) at a time t to the application of a local external field (the driving force f in our
case) at the same position x at a previous time tw. X[Γ] is a functional that can vary between
two asymptotic constant values, either it takes value one (for scales that are already in the
stationary regime) or X[Γ] → X∞ (for those scales that are still out of equilibrium).

Numerically, it is more convenient to study the susceptibility, defined as χ(t, tw) =∫ t

tw
dsR(t, s), instead of the response function R(t, tw). The reason being that the computa-

tion of χ(t, tw) does not require the introduction of an instantaneous spike-like perturbation
in the external field and, in addition, the integration in time implies that the external field
operates during a period of time making the estimation of its effects much easier to detect.
We integrate R(t, s) in eq. (3) in the variable s and obtain

χ(t, tw) =
X[Γ]
T

[Γ(t, t) − Γ(t, tw)]. (4)

In order to check whether the fluctuation-dissipation relation is broken during relaxation in
our system, we use a similar numerical setup as before. We anneal the system by heat-
ing at very high temperatures until a steady state is reached, then the temperature is de-
creased and that event marks the time origin t = 0. After a waiting time tw, we run in
parallel two copies A and B of the interface. Copy A is then driven with constant force
fA(x, t) = fA as before, and copy B is driven with a slightly different local driving force
fB(x, t) = fA + δf(x), where δf(x) is a small uncorrelated random field which takes at ran-
dom the values ±ε with equal probability. The susceptibility can then be approximated by
χ(t, tw) ∼ 〈(hB(x, t) − hA(x, t)) δf(x)〉/|ε| [22]. In fig. 3, parametric plots with the suscepti-
bility as a function of Γ(t, t) − Γ(t, tw) are shown for the nonlinear equation (λ = 1) and for
different temperatures. The fluctuation-dissipation theorem is clearly violated, again akin to
observations in other glassy systems.

Temperature-induced avalanches. – Finally, we pay attention to the dynamics of
avalanches at finite temperatures in the nonlinear model equation (1). Avalanches in forced
superconductors have attracted much attention [23, 24], but little is known about avalanche
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Fig. 4 – (Color online) Spectral densities of the velocity signal for the nonlinear equation (λ = 1).
Temperatures are T = 0.01, 0.09, 0.1225, 0.16, 0.25, 1 and 2.25 from bottom to top. The straight
lines are guides for the eye and have a slope −0.3 and −1.16.

dynamics at a finite T . h(t) data (not shown) for a single disorder realization have a dented and
devil-staircase–like appearance caused by the stick-slip motion associated with avalanches trig-
gered by a local temperature-induced depinning event. We monitor the avalanche dynamics in
our system by looking at the temporal correlations of the average velocity signal v(t) = ∂th(t)
well below fc(T = 0). In fig. 4, we plot the spectral density S(ω) = 〈|v̂(ω)|2〉, averaged over
disorder realizations. The velocity signal v(t) shows long-range temporal correlations. In the
low-frequency limit we observe a power law decay S(ω) ∼ ω−θ with a temperature-dependent
exponent θ(T ) ranging from uncorrelated noise θ ∼ 0 (at very low temperatures) to long-range
correlations 1.0 < θ(T ) < 1.2 for temperatures in the range 0.05 < T < 0.20. For even higher
temperatures, T ≥ 0.25, velocity spectra clearly show a crossover to a different power law
decay with exponent θ(T ) ≈ 0.30, which then remains unaltered when temperature is further
increased. The latter corresponds to a free-moving interface in the KPZ universality class,
whose velocity-fluctuation spectrum is known to diverge as 1/ωθ at low frequencies, where
θ = (d + 4)/z − 3 in d + 1 dimensions [25]. In d = 1 one then finds that θ = 1/3 in good
agreement with our numerical results at high temperatures where the interface is freely mov-
ing with a finite displacement velocity. We obtained similar results for the linear case (λ = 0),
where θ ∼ 1 in the intermediate temperatures regime, and the crossover to ω0 for the highest
temperatures, as expected for the linear equation [25].

When the interface is driven well below fc at finite temperatures, avalanches of mov-
ing events of typical size ξ are triggered. At very low temperatures, temperature-induced
avalanches are very unlikely, disjoint and uncorrelated to one another, giving rise to a typical
flat spectrum (θ ∼ 0) of the velocity signal. However, at higher temperatures, more and more
sites can detach from the disorder due to thermal noise. At contrast with the elastic case
(λ = 0), new avalanches tend to be triggered in the spatial neighborhood of sites with recent
activity. This in turn produces spatially correlated events, since the new avalanche is more
likely to spatially overlap with the previous one. This mechanism is essentially different than
that of the elastic case and can be understood as a direct effect of the dominant nonlinear
KPZ term λ(∇h)2, which drives lateral growth and triggers activity in nearby sites much
more effectively than the pure linear elastic Hamiltonian. At a certain temperature (around
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0.09 ≤ T ≤ 0.16 for the nonlinear model, see fig. 4), the avalanches cover a macroscopic region
of the system. This leads to bursts of spatially connected moving events and, consequently,
long-range temporal correlations (θ ∼ 1) in the interface velocity fluctuations. Eventually, at
high enough temperatures (T ≈ 1 for fig. 4) all the pinning sites are overcome by the thermal
fluctuations freeing the interface from the disorder. Further increasing the temperature above
that point will not affect the dynamics. In this regime the interface is described by the KPZ
dynamics and ω−1/3 velocity-fluctuation spectra.
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