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Among the realistic ingredients to be considered in the computational
modeling of infectious diseases, human mobility represents a crucial
challenge both on the theoretical side and in view of the limited
availability of empirical data. To study the interplay between short-
scale commuting flows and long-range airline traffic in shaping the
spatiotemporal pattern of a global epidemic we (i) analyze mobility
data from 29 countries around the world and find a gravity model
able to provide a global description of commuting patterns up to 300
kms and (ii) integrate in a worldwide-structured metapopulation
epidemic model a timescale-separation technique for evaluating the
force of infection due to multiscale mobility processes in the disease
dynamics. Commuting flows are found, on average, to be one order
of magnitude larger than airline flows. However, their introduction
into the worldwide model shows that the large-scale pattern of the
simulated epidemic exhibits only small variations with respect to the
baseline case where only airline traffic is considered. The presence of
short-range mobility increases, however, the synchronization of sub-
populations in close proximity and affects the epidemic behavior at
the periphery of the airline transportation infrastructure. The present
approach outlines the possibility for the definition of layered
computational approaches where different modeling assumptions
and granularities can be used consistently in a unifying multiscale
framework.

complex networks � computational epidemiology � human mobility �
multiscale phenomena

Computational approaches to the realistic modeling of spatial
epidemic spread make use of a wide array of simulation

schemes (1) ranging from very detailed agent-based approaches
(2–6) to structured metapopulation models based on data-driven
mobility schemes at the interpopulation level (7–10). All these
approaches integrate a wealth of real-world data. However, it is not
yet clear how to discriminate the effects of the inclusion/lack of
real-world features in specific models. This limitation is mainly
related to our incomplete knowledge of human interactions and
mobility processes, which are fundamental aspects to describe a
disease spread. Although recent efforts started to make available
massive data on human mobility from different sources and at
different levels of description (11–20), the multiscale nature of
human mobility is yet to be comprehensively explored. Human
mobility can be generally described by defining a network of
interacting communities where the connections and the corre-
sponding intensity represent the flow of people among them (13,
14). Global mobility flows therefore form very complex multiscale
networks (21) spanning several orders of magnitude in intensity and
spatiotemporal scales ranging from the long-range intercontinental
air traffic (13, 15) to the short range commuting flows (17–19). A
multitude of heuristic models for population structure and mobility
patterns have been proposed, but they all depend on the specific
mobility process under consideration (22, 23). The limited under-
standing of the interrelations among the multiple scales entailed in
human mobility and their impact on the definition of epidemic
patterns constitute a major road block in the development of
predictive large-scale data driven epidemic models. In this context,

two questions stand out: (i) Is there a most relevant mobility scale
in the definition of the global epidemic pattern? and (ii) At which
level of resolution of the epidemic behavior does a given mobility
scale become relevant, and to what extent?

To begin addressing these questions, we use high-resolution
worldwide population data that allow for the definition of sub-
populations according to a Voronoi decomposition of the world
surface centered on the locations of International Air Transport
Association (IATA)-indexed airports (www.iata.org). We have then
gathered data on the commuting patterns of 29 countries in five
continents, constructing short-range commuting networks for the
defined subpopulations. Extensive analysis of these networks allows
us to draw a general gravity law for commuting flows that repro-
duces commuting patterns worldwide. This law, valid at the scale
defined by the tessellation process, is statistically stable across the
world because of the globally homogeneous procedure applied to
build the subpopulations around transportation hubs. The multi-
scale networks we obtain are integrated into the global epidemic
and mobility (GLEaM) model, a computational platform that uses
a metapopulation stochastic model on a global scale to simulate the
large-scale spreading of influenza-like illnesses (ILI). To fully
consider the effect of multiscale mobility processes in the disease
dynamics, we develop a timescale-separation technique for evalu-
ating the force of infection due to different mobility couplings and
simulate global pandemics with tunable reproductive ratios. The
results obtained from the full multiscale mobility network are
compared with the simulations in which only the large-scale cou-
pling of the airline transportation network is included. Our analysis
shows that although commuting flows are, on average, one order of
magnitude larger than the long-range airline traffic, the global
spatiotemporal patterns of disease-spreading are mainly deter-
mined by the airline network. Short-range commuting interactions
have, on the other hand, a role in defining a larger degree of
synchronization of nearby subpopulations and specific regions,
which can be considered weakly connected by the airline transpor-
tation system. In particular, it is possible to show that short-range
mobility has an impact in the definition of the subpopulation
infection hierarchy. The techniques developed here allow for an
initial understanding of the level of data integration required to
obtain reliable results in large-scale modeling of infectious diseases.

Results and Discussion
Simulations of worldwide epidemic spread are generally based on
structured metapopulation models that consider data-driven
schemes for long-range mobility at the interpopulation level cou-
pled with coarse-grained techniques within each subpopulation
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(7–10, 24–26). In this paper, we use the GLEaM computational
scheme based on a georeferenced metapopulation approach. The
model consists of three data layers. The population and mobility
layers allows the partition of the world into geographical census
regions coupled by population movements. This partition defines
the subpopulation network where the connections between sub-
populations represent the fluxes of individuals due to the
transportation infrastructures and mobility patterns. Superim-
posed on this subpopulation network is the epidemic layer that
defines inside each subpopulation the disease dynamics that
depends on the specific etiology of the disease considered (see
Material and Methods).

Multiscale Mobility Networks. The basic structure of GLEaM is
based on high-resolution population data† that estimates the pop-
ulation with a resolution given by cells of 15 � 15 minutes of arc,
covering the whole planet. This population data allows the con-
struction of Voronoi tassels around transportation hubs in the
world, defining the subpopulations structure of the metapopulation
model (see SI Appendix). In particular, we identify 3,362 subpopu-
lations centered around IATA airports in 220 different countries.
The air-traffic network among the defined subpopulations is ob-
tained from the IATA databases that contain the list of worldwide
airport pairs connected by direct flights and the number of available
seats on any given connection. The high level of geographical
resolution of the subpopulation database enables us to integrate
also the mobility flows due to commuting patterns between sub-
populations (see Material and Methods) and construct the corre-
sponding commuting network. The main difficulty in defining a
commuting network worldwide is the lack of a global database as
opposed to the case of the air-traffic flow. Data are scattered in
different national and international databases that use different
administrative and geographical granularities, and several defini-
tions of commuting flows. We have collected commuting data from

29 countries (a full list of countries and the database properties are
reported in the SI Appendix) in five different continents. Each
dataset was mapped into the GLEaM Voronoi tessellation con-
structing the commuting networks at the subpopulation level.

In Fig. 1, we show the commuting network of the continental U.S.
as obtained by mapping the county commuting data onto the
subpopulations used by GLEaM. Commuting data do not consider
airline flows that are accounted for by the IATA dataset. On the
same scale, we also report the airline traffic network, readily
highlighting the difference in scale and spatial structure of the two
networks. The commuting network appears as an almost grid-like
lattice connecting neighboring subpopulations, whereas the airline
traffic network is dominated by long range connections. The wide
range of scales is evident also in the intensities of the mobility flows,
spanning several orders of magnitude, with the average commuting
flow being one order of magnitude larger than the average airline
traffic flow. Finally, it should be noted that, in general, commuting
flows refer to round trip processes with a characteristic time of the
order of 1/3 day (average duration of a work day) compared with
much longer characteristic times for airline travel (average value
around two weeks at the end.‡

To gain general insight on the commuting flow, we use the
general gravity model from transportation theory (22, 23) as a
starting point. This model assumes that the commuting flow wij
between subpopulation i (with population Ni) and subpopulation j
(with population Nj) takes on the form:

wij � C
Ni

�Nj
�

f�dij�
, [1]

where C is a proportionality constant, � and � tune the depen-
dence with respect to each subpopulation size, and f(dij) is a
distance-dependent functional form. Gravity laws usually con-
sider power or exponential laws for the behavior of f(dij). The
results reported in the literature are variable and generally
depend on the way the subpopulations are defined. In our case,

†The Gridded Population of the World and The Global Rural-Urban Mapping Projects,
Socioeconomic Data and Applications Center of Columbia University, http://sedac.ciesin.
columbia.edu/gpw. ‡Travel Trends 2007, Office for National Statistics, www.statistics.gov.uk.
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Fig. 1. Multiscale mobility networks and gravity law fit. (A) Continental U.S. airline transportation network. (B) Continental U.S. commuting network. The width and
color (from blue to red) of the edges represent on a logarithmic scale the intensity of the mobility flow. (C) Commuting flux obtained from data (w(D)) rescaled by the
gravity law’s dependence on origin and destination populations (Ni

�Nj
�), as a function of the distance between subpopulations. The number of people commuting

between different urban areas decreases exponentially with distance up to 300 kms. (D–F) Ratio of commuting flux obtained from data (w(D)) to corresponding
commutingfluxpredictedbythegravitymodelwithfittedparameters (w(M)), asa functionofdistance,populationoforiginandpopulationofdestination, respectively.
The three plots provide values spread �1, showing that the synthetic networks generated by the functional form (see Table 1) reproduce well the commuting fluxes
obtained from data. Solid lines in all frames are guides to the eye.
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we can take advantage of the statistical similarity of the sub-
populations centered on major transportation hubs. We tested
the gravity law by the statistical analysis of more than 104 flows
worldwide, and we found that the best fit is obtained by using an
exponential function f(dij) � exp(dij/r), where r is the character-
istic length that governs the decay of commuting flows. In Table
1, we report the estimated values for the exponents �, �, and r.

Noticeably, we can validate the gravity law at the level of
geographical area or country as shown in Fig. 1, where the
commuting flows obtained from the data are compared with the
synthetic ones predicted by the model, as functions of the various
variables of the gravity law. In the SI Appendix, we report similar
tests at the level of geographical areas and countries, that confirm
the generality and goodness of the obtained law. It is worth
remarking that although the present gravity law works well at the
granularity defined by our Voronoi decomposition, these results
cannot be extrapolated to different granularities. For instance, we
notice that the exponents obtained by our approach are quite close
to those obtained by Viboud et al. (17), although the spatial decay
has a completely different form. We do not see any obvious reason
for the observed scaling form, but it must be noted that we are
working with subpopulations, which are by construction statistically
more homogeneous and of larger size than the county level used in
ref. 17. Administrative regions might indeed impose boundaries
that define subpopulations not clearly associated to centers of
gravity for mobility processes, as e.g., large urban areas cut in
multiple counties. In general, both approaches are usually tested in
transportation theory (as in ref. 19), and in some cases the expo-
nential function was found to better fit migration phenomena (27).

The above gravity law allows us to work with two different
worldwide commuting networks. An entirely synthetic one, gener-
ated by using the gravity law fitted to the empirical data, and one
integrating the empirical data. The synthetic network considers only
neighboring subpopulations. We have empirically observed that
second-neighbor interactions are on average one order of magni-
tude smaller than the nearest-neighbor interactions and their
contribution can be neglected in the first-order estimation of the
effective force of infection. In the following, we will report the
results obtained only with the synthetic network and we leave to
the SI Appendix a demonstration that no significant differences are
observed when we compare the results obtained by using the
synthetic and the real data networks.

Epidemic Simulations. To study the effect that commuting networks
have on the overall spread of an emerging disease, we consider the
simulation of an ILI and compare the results with a simulation in
which we include only airline traffic as in previous works (10). For
the sake of clarity, in the following we compare the results for the
simulations of a hypothetical pandemic influenza with R0 � 1.9
starting in Hanoi on April 1 (the SI Appendix also reports results for
October 1). The model includes a seasonal dependence of the
transmission. In the SI Appendix file, we report simulations of the
2001–2002 seasonal influenza timeline and compare those with
the real surveillance data. The simulations of the realistic model
and comparison with real data confirm the analysis presented here
for the synthetic pandemic model.

GLEaM is fully stochastic and takes into account the discrete
nature of individuals both in the travel coupling and in the
compartmental transitions. The transmission model within each

urban area follows a compartmentalization specific to the disease
under study. Here we use the classic ILI compartmentalization in
which each individual is classified by one of the discrete states such
as susceptible (S), latent (L), infectious (I), and permanently
recovered (R). Infectious persons are further subdivided into
asymptomatic, symptomatic traveling, and symptomatic nontravel-
ing as detailed in Material and Methods. The discrete nature of
individuals is implemented by introducing binomial and multino-
mial processes inside each urban area for the stochastic evolution
of the infection. A detailed exposition of the stochastic approach to
disease evolution is provided in the SI Appendix.

In GLEaM, the airline mobility is integrated explicitly as indi-
viduals are allowed to travel from one subpopulation to another by
means of the airline transportation network (28) similarly to the
models in refs. 7 and 8 and the stochastic generalizations of ref. 9.
In each subpopulation j, the number of individuals is Nj(t) and
Xj

[m](t) is the number of individuals in compartment [m] of the
disease evolution at time t; therefore Nj(t) � �m Xj

[m](t). The
dynamics of individuals traveling between cities is described by
the stochastic transport operator �j ({X[m]}) representing the net
balance of individuals in a given state [m] that entered or left each
city j. This operator is a function of the traffic flows per unit time
�j� with the neighboring cities and of the city population Nj. In
particular, the number of passengers of each category traveling
from city j to city � is an integer random variable, in that each of the
potential travelers has a probability pj� � �j� �t/Nj to go from j to
� in the time interval �t. In city j, the number of passengers traveling
on each connection (j,�) at time t defines a set of stochastic variables
that follow a multinomial distribution (10). The calculation can be
extended to include transit traffic up to one connecting flight (29).

The introduction of commuting flows represents a numerical
challenge as it acts at a very different time scale with individuals that
have very short visit duration in the neighboring subpopulation.
Although the airline traffic finds a natural time scale of one day, an
equivalent mechanistic simulation of the commuting mobility
would require working on a much smaller time scale hardly
compatible with the airline traffic. This problem can be solved by
relying on the results of refs. 30 and 31. Commuting flows govern
subpopulation interactions by defining the visiting rate of an
individual in subpopulation i to subpopulation j as �ij � wij/Ni.
Visiting individuals have a very short visit time associated to high
return rates, �, to their original subpopulations (� � 3 day�1),
corresponding to �ij 		 � for all of the populations. It can be shown
that the system is then described by stationary quantities Xij

[m] in
each compartment [m] for time scales larger than ��1 (the time scale
governing the relaxation time to equilibrium across subpopulations)
in which Xij

[m] is defined as the number of visitors currently in j
coming from subpopulation i in compartment [m]. When the
disease duration is significantly larger than ��1, as is the case for the
ILI with characteristic time 	�1 � 3 days, we can use a time scale
separation approximation in which at each time step, the force of
infection experienced by susceptible individuals in each subpopu-
lation is a function of the stationary values Iii and Iji. The full force
of infection used in the model is reported in the Material and
Methods section, and a full derivation of the time separation
approximation is reported in the SI Appendix.

Fig. 2 shows that the global and regional timing and size of the
epidemic is weakly affected by also considering the commuting
network in GLEaM. Both the probability of having a global
outbreak and the overall profiles are very similar in the two cases,
with the global epidemic size at the end of the first year almost
unaffected by the inclusion of commuting. We perform a sensitivity
analysis by testing the outset variation of the intensity of the
commuting flows and varying the return time rate � of more than
one order of magnitude. In the SI Appendix, we show that the
profiles do not show significant variations, the results being very
robust against strong fluctuations in the commuting mobility pro-
cess. The effect of commuting flows is, however, noticeable during

Table 1. Exponents of the gravity law as obtained by applying a
multivariate analysis to global commuting data

d (km) � � r (km)


300 0.46 
 0.01 0.64 
 0.01 82 
 2
�300 0.35 
 0.06 0.37 
 0.06 N/A
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the tail of the epidemic event. As presented in Fig. 2, many regions
of the world show a broader tail in the absence of commuting,
showing that the commuting coupling enhances the synchroniza-
tion of the local epidemic profiles. The observed broadening of an
epidemic profile that includes multiple subpopulations is due to the
different timing of the outbreak that reaches the various subpopu-
lations. The effect is more pronounced in the lack of short range
coupling, as highlighted in the example reported in Fig. 3D and E
of an air transportation hub loosely connected by air travel flow to

the surrounding subpopulations. As expected, no significant change
is observed in the hub profile, whereas the time delay in neighboring
locations with limited airline connections is dramatically reduced by
the coupling due to local commuting flows. After infecting the hub,
the epidemic radiates out to the neighboring geographical census
areas in a pattern reminiscent of the physical process of diffusion.
This effect naturally leads to a much stronger correlation and
synchrony in the evolution of the pandemic at the local level. In the
SI Appendix, we present the model informed with the realistic
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parameters and initial conditions of 2001–2002 seasonal influenza
season and compare the obtained epidemic pattern with the real
data. The results confirm the synchronization effect and the better
agreement with the actual data at the regional level when com-
muting flows are introduced in the model.

Commuting flows therefore alter the hierarchy of epidemic
transmission from region to region. This hierarchical organization
can be inferred by constructing the epidemic invasion tree that
represents the transmission of the infection from one subpopulation
to the other during the history of the epidemic. The stochastic
nature of the epidemic process implies that each realization will
produce a different tree. An overall epidemic invasion network can
be constructed by defining weighted, directed links, Tij, that denote
the probability that the epidemic in subpopulation j is seeded by
individuals belonging to the subpopulation i. This probability is
defined by the ratio between the number of realizations in which we
have a seeding i 3 j and the total number of realizations. When
constructing the epidemic invasion tree we use averages over 103

realizations. Finally, to highlight only the most likely infection tree,
we construct the minimum spanning tree from the world-seeding
subpopulation where we minimize the distance defined on each link
as �1 � Tij. In Fig. 4, we show the infection arrival time hierarchy
in the two considered scenarios for the continental U.S. In the
absence of commuting (Fig. 4A), airline hubs have a predominant
role and are completely responsible for spreading the disease to
every other location through direct air connections. This feature
leads to the counterintuitive effect that locations near a large
airport, but with no frequent direct flight to that airport, can be
infected only much later through a convoluted sequence of flights.
On the other hand, when we superimpose the commuting network
we obtain the expected effect of reducing the importance of large
airports and increasing the locality of the epidemic spread (Fig. 4B).
The inclusion of commuting patterns is therefore relevant in the
evaluation of the epidemic invasion path and timing.

Conclusions
Data collected from 29 countries in five continents were used to fit
a gravity law that was then used to model commuting behavior
between the Voronoi geographical census areas built around every

airport indexed by IATA. The effect of adding this short-range
commuting network to a worldwide epidemic model including all
airline traffic flowing among 3,362 airport locations allows us to
discriminate the main contribution of the long- and short-range
mobility flows. The impact of the epidemic does not change as the
competition between the long- and short-range coupling acts only
at the beginning of the epidemic in each subpopulation. Both
coupling terms become a second-order effect once the epidemic
ramps up and the major force of infection is endogenous to the
subpopulation. Therefore, both coupling mechanisms affect just the
hierarchy of epidemic progression and its timing. On the one hand,
the global epidemic behavior is governed by the long-range airline
traffic that determines the arrival of infectious individuals on a
worldwide scale. At the local level, however, the short-range
epidemic coupling induced by commuting flows creates a synchrony
between neighboring regions and a local diffusive pattern with the
epidemic flowing from subpopulations with major hubs into the
neighboring subpopulations. These results clearly show that the
level of detail on the mobility networks can be chosen according to
the scale of interest. Neglecting local coupling for instance does not
produce a dramatic effect if one is mainly interested in the global
overall pattern at the granularity level of a large geographical area
or country. On the other hand, more refined strategies that require
access to finer granularity can be implemented by the progressive
addition of details without radically altering the perspective
achieved at the larger scales. This is extremely important in the
balance between computational time and flexibility of models and
becomes very relevant when computational approaches are used in
real time to aid the decision process for a public health emergency.
The present analysis opens the path to quantitative approximation
schemes that calibrate the level of data resolution and the needed
computational resources with respect to the accuracy in the de-
scription of the epidemics.

Materials and Methods
Voronoi Tessellation Around Main Transportation Hubs. We define the geo-
graphical census areas centered around IATA airports by assigning the popula-
tion of each cell of 15 � 15 minutes of arc to the closest airport within the same
country. Such a procedure defines a Voronoi-like tessellation (32) for the popu-

Fig. 4. Epidemic invasive tree. (A and B) Geographical representation of the continental U.S. epidemic invasion tree with only airline traffic (A) and when both airline
traffic and commuting are considered (B). Red represents the roots (i.e., the first cities that were seeded from abroad), and, as we move down the tree, the colors change
from yellow to dark blue. The arrows representing the edges of the tree are colored as the parent node. (C and D) We also provide a schematic representation of the
invasion tree rooted at Chicago when only flights are considered (C) and with both air traffic and commuting (D). As demonstrated in both examples, the spreading
pathway is completely dominated by the airline hubs as the only sources of imported seeds. However, the hierarchy is broken by the introduction of commuting flows
as the number of shells around the airline hubs and the branches at the secondary nodes increase.
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lated cells of the world with a cut-off scale for the tassels size of 200 kms (see also
the SI Appendix for further details).

Disease Structure, Seasonality and R0. In each urban area, the evolution of the
disease is governed by the compartmental scheme of the baseline scenario of ref.
10. A susceptible individual S in contact with a symptomatic (It,Int, traveling or
nontraveling, respectively) and asymptomatic (Ia) infectious individual contracts
the infection at rate � or r� �, respectively, and enters the latent (L) compartment,
where he/she is infected but not yet infectious. At the end of the latency period,
individuals in the latent class enter one of the symptomatic infectious compart-
ments (It, Int) with probability 1�pa or become asymptomatic (Ia) with probability
pa. Symptomatic individuals are further divided between those who are allowed
to travel (It) with probability pt and those who are prevented from doing so (Int)
with probability 1�pt, depending on the severity of symptoms. All infectious
individuals enter the permanently recovered/removed compartment (R) at a rate
of 	 per day. The latent period has an average duration of ��1 � 1.9 days and is
assumed to be followed by an infectious period with a mean duration of 	�1 �
3 days (3, 10, 33). Given that infection has occurred, we assume that individuals
become asymptomatic with probability pa � 0.33 (3, 10, 33). The relative infec-
tiousness of asymptomatic individuals is r� � 0.5 (10) and symptomatic individuals
are allowed to travel with probability pt � 0.5. The contagion process (i.e., the
generation of new infections through the transmission of the disease from
infectious to susceptible individuals) and the spontaneous transitions (e.g., from
latent to infectious or from infectious to recovered) are modeled with binomial
and multinomial distributions (see the SI Appendix for a detailed description of
the processes). The threshold parameter of the disease that determines the
spreadingrateof infection is calledbasic reproductionnumber (R0)and isdefined
as the average number of infected cases generated by a typical infectious indi-
vidual when introduced into a fully susceptible population (34). For our compart-
mental model we have R0 � �	�1 [1�pa  r� pa]. The R0 values indicated in the
figures and discussed in the paper do not consider the effect of seasonality and
the commuting in the force of infection. We take into account the seasonal
behavior of influenza by adopting the scheme from ref. 10. The transmission rate
�j in each geographical census area is adjusted by a scaling factor that varies
monthly according to the city’s climatic zone. For example, cities in the tropical
zone have a scaling factor that is always 1, independent of the season. See ref. 10
and its supporting information for details.

Effective Force of Infection Generated by Commuting Flows. The effect of
commuting in the spread of infection can be considered implicitly by evaluating
the force of infection between subpopulations coupled by commuting flows. In

the case of � 		 �j, the relaxation time to equilibrium values in the populations is
dominated by the return rate � to the origin subpopulation, as shown in the SI
Appendix file. We can therefore use the equilibrium values of population sizes in
our calculations of force of infection, because the ��1 is much smaller than the
time scales of disease evolution (i.e., ��1 and 	�1). New infections in a subpopu-
lationareduetothetransmissionbetweensusceptiblesandinfectious individuals
occurring in the subpopulation or during a visit to a neighboring subpopulation.
Taking this into account, it is possible to derive the force of infection j in j as

j �
�j

�1 � �j/��N*j �Ij
nt �

Ij
t � r�Ij

a

1 � �j/� �
�

1
�1 � �j/���

�
i�v�j�

��j�ij

N*j

Ii
t � r�Ii

a

1 � �i/�
�

�i�ji

N*i

�Ii
nt �

Ii
t � r�Ii

a

1 � �i/�
� �

��v�i�

��i

�

I�
t � r�I�

a

1 � ��/���. [2]

Adetailedderivation isprovided in the SIAppendix. In theaboveexpression, N*j �
Njj  �i��(j) Nij is the actual number of individuals in j due to commuting. The first
terms of the right-hand side of Eq. 2 takes into account the transmission of the
infection from the local infectious individuals in j. The second term considers the
transmission due to the infectious individuals during their visits to j with local
susceptible persons. The third and fourth terms consider the interactions of
susceptible individuals during their visits to neighboring subpopulations i with
the local infectious persons and the infectious visitors of i, respectively. Here we
have also considered that the transmission rate � may be different in each
population. The last expression includes second-order commuting terms (e.g., �ji

��i/�2), which are neglected in the actual computation. The probability of new
infections to be generated in city j is finally given by j �t in the time interval �t,
acting on a pool of susceptible individuals Sj.
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