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ABSTRACT
Analysis has shown that the standard Markovian model of Web
navigation is a poor predictor of actual Web traffic. Using empirical
data, we characterize several properties of Web traffic that cannot
be reproduced with Markovian models but can be explained by an
agent-based model that adds several realistic browsing behaviors.
First, agents maintain bookmark lists used as teleportation targets.
Second, agents can retreat along visited links, a branching mecha-
nism that can reproduce behavior such the back button and tabbed
browsing. Finally, agents are sustained by visiting pages of topical
interest, with adjacent pages being related. This modulates the pro-
duction of new sessions, recreating heterogeneous session lengths.
The resulting model reproduces individual behaviors from empir-
ical data, reconciling the narrowly focused browsing patterns of
individual users with the extreme heterogeneity of aggregate traffic
measurements, and leading the way to more sophisticated, realistic,
and effective ranking and crawling algorithms.

Categories and Subject Descriptors: H.3.4 [Information Stor-
age and Retrieval]: Systems and Software–Information networks;
H.4.3 [Information Systems Applications]: Communications Ap-
plications–Information browsers; H.5.4 [Information Interfaces and
Presentation]: Hypertext/ Hypermedia–Navigation

General Terms: Algorithms, Measurement

Keywords: Web links, navigation, traffic, clicks, browsing, en-
tropy, sessions, agent-based model, bookmarks, back button, inter-
est, topicality, PageRank, BookRank

1. INTRODUCTION
Despite its simplicity, PageRank [5] is a well-established model

that characterizes Web browsing as a random surfing activity. As
people spend more and more time online, their Web traces provide
an increasingly informative window into human behavior, enabling
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systematic testing of PageRank’s underlying navigation model [12].
Traffic patterns aggregated across users reveal that the key assump-
tions of uniform random walk and teleportation are widely violated,
making PageRank a poor predictor of traffic. While the intent of
PageRank is to gauge the importance of pages rather than predict
traffic, traffic is a direct empirical indication of the esteem in which
users hold a page. Here we expand on our previous empirical anal-
ysis [12, 11] by considering individual traffic patterns [8], which
suggest the need for an agent-based model with more realistic fea-
tures, such as memory and topicality, to account for individual traf-
fic patterns observed in real-world data.

We previously introduced BookRank, a browsing model that adds
a memory mechanism to PageRank [2]. Here we introduce a novel
agent-based model that also accounts for the topical interests of
users. We compare the traffic patterns of these models with indi-
vidual Web traffic data from a field study of 1,000 users. Our main
contributions include:

• We show that the diversity of pages visited by individual
users is not well-predicted by either PageRank or BookRank,
suggesting that users have focused interests and recurrent
habits. The diversity apparent in aggregate measures of traf-
fic follows from the diversity across individual interests.

• Using logical sessions (cf. §3), we find including a simple
memory mechanism (as in the BookRank model) is insuffi-
cient to capture broad distributions of session size and depth.

• We present ABC, an agent-based model with three key in-
gredients: (1) bookmarks are used as teleportation targets,
defining session boundaries and capturing the diverse popu-
larity of starting pages; (2) a back button accounts for branch-
ing observed in empirical traffic; and (3) topical interests
drive whether agents continue browsing or start new ses-
sions, yielding diverse session sizes. ABC also incorporates
topical locality, so that an interesting page is likely to link to
other such pages.

• Finally, we demonstrate that ABC outperforms both PageR-
ank and BookRank in modeling individual statistics such as
entropy and size and depth of sessions.

2. BACKGROUND
There have been many empirical studies of Web traffic patterns,

most commonly through analysis of Web server logs. This method-
ology allows us to distinguish individual users though their IP ad-
dresses, thus capturing individual traffic patterns [8]. However, the
choice of target server biases both the sample of users and the sam-
ple of the Web graph being observed. An alternative source of

229



Web traffic data is browser toolbars, which gather data based on
the surfing activity of many users. Such a method is still biased
by users who have opted to install the software, and the data are
not generally available to researchers. Adar et al. [1] used this ap-
proach to study patterns of page revisitation without regard to ses-
sions. A related approach is to identify a panel of desirable users
and have them install tracking software, which eliminates many
sources of bias but incurs significant experimental costs. Such an
approach has been used to describe the exploratory behavior of Web
surfers [3]. These studies did not propose models to explain the ob-
served traffic patterns. The methodology of our study captures traf-
fic data directly from a running network, an approach first adopted
by Qiu et al. [15], who used captured HTTP packet traces to inves-
tigate how browsing behavior is driven by search engines.

We particularly focus on the statistical characterization of brows-
ing sessions. A common assumption is that long pauses correspond
to breaks between sessions. Based on this assumption, many re-
searchers have relied on timeouts as a way of defining sessions, a
technique we have found to be flawed [11], motivating the defini-
tion of time-independent logical sessions, based on building ses-
sion trees rooted at pages requested without a referrer. The model
we present is in part aimed at explaining the broad distributions of
size and depth empirically observed for these logical sessions.

Other researchers have suggested more plausible models to cap-
ture features of real Web browsing such as the back button [10, 4].
The interplay between user interests and page content in shaping
browsing patterns has also been studied. Huberman et al. proposed
a model in which visited pages have interest values described by
a random walk; navigation continues while the current page has a
value above a threshold [9]. This kind of model is closely related
to algorithms designed to improve topical crawlers [14].

In preliminary results, we proposed a model in which the user
maintain a list of bookmarks from which they start new sessions [2].
We called this model BookRank, since bookmark selection is con-
trolled by a ranking based on the frequency of visits. This model
reproduces many characteristics observed in empirical traffic data,
including page and link traffic distributions, but fails to account for
features of the navigation patterns of individual users, such as en-
tropy and session characteristics. In the remainder of this paper, we
extend the BookRank model to address these shortcomings.

3. EMPIRICAL TRAFFIC DATA
The HTTP request data were gathered from one of the under-

graduate dormitories at Indiana University under conditions de-
scribed in previous work [11]. This data set consists of (referrer,
target) pairs for HTTP requests associated with actual page fetches;
it contains roughly 30 million requests, 1,000 users, 2.5 million dis-
tinct URLs. Using this filtered set of HTTP requests (“clicks”), we
organize each user’s clicks into sessions. These sessions are not
based on a simple timeout, which previous analysis has shown to
be arbitrary and misleading [11]. Instead, we organize the clicks
into tree-based logical sessions according to an algorithm described
formally in our previous work [11]. The key notions are that new
sessions begin with requests with an empty referrer; that each re-
quest represents a directed edge from a referring URL to a target
URL; and that requests are assigned to the session in which their
referring URL was most recently requested.

These session trees mimic the multitasking behavior of users
with modern browsers: a user can have several active sessions.
The key properties of the trees, such as size and depth, are also
relatively insensitive to an additional timeout constraint [11]. In
this analysis, we include such a timeout: a click cannot be associ-
ated with a session tree that has been dormant for thirty minutes.
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Figure 1: Schematic illustrations of the PageRank (A),
BookRank (B), and ABC (C) models.

Most importantly, the tree structure allows us to infer how users
backtrack as they browse. Because modern browsers use caching
mechanisms to improve performance, unless overridden by HTTP
options, browsers generally do not repeat a recent request. We thus
do not observe multiple links pointing to the same page (within a
single logical session), giving us direct way of determining when a
user backtracks. However, session trees allow us to infer backward
traffic: if the next request in a tree comes from a URL other than
the most recently visited one, the user must have navigated to that
page, or else opened it in a separate tab.

To characterize the properties of our traffic data and evaluate the
models proposed later in this paper, we examine several distribu-
tions that focus on the properties of individual users and sessions.
For an individual user j, the Shannon information entropy is de-
fined as Sj = −

P
i ρij log2 ρij , where ρij is the fraction of visits

of user j to site i aggregated across sessions. The session size is
defined as the number of unique pages visited in a logical session.
The session depth is the maximum tree distance between the start-
ing page of a session and any page visited within the same session.

Note that we have already characterized aggregate distributions
such as page and link traffic in preliminary work [2, 11]. Another
feature sometimes used to characterize random browsing behavior
is the distribution of return time, which in this case would be the
number of clicks between two consecutive visits to the same page
by a given user [8, 2]. However, cache behavior and overlapping
sessions mean that this information cannot be retrieved in a reliable
way from the empirical data.

To properly analyze these distributions, we compare them with
those generated by two reference models based on PageRank-like
modified random walkers with teleportation probability pt = 0.15.
To obtain a useful reference model for traffic data that is based on
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Figure 2: Empirical and baseline distributions of user entropy
(A), session size (B), and session depth (C).

individuals, we imagine a population of PageRank random walk-
ers, as many as the users in our study. The first reference model
(PageRank) is illustrated in Fig. 1A. Each walker browses for as
many sessions as there were empirical sessions for the correspond-
ing real-world user. The PageRank sessions are terminated by the
constant-probability jumps, so the total number of pages visited
by a walker may differ from the corresponding user. Teleportation
jumps lead to session-starting pages selected uniformly at random.

The BookRank model is shown in Fig. 1B. The key realistic
ingredient differentiating this model from PageRank is related to
memory: agents maintain individual lists of bookmarks chosen as
teleportation targets based on the number of previous visits. Ini-
tially, each agent randomly selects a starting page (node). With
probability 1 − pt, the agent navigates locally, following a link
from the present node selected with uniform probability. Unless
previously visited, the new node is added to the bookmark list. The
frequency of visits is recorded, and the list of bookmarks is kept
ranked from most to least visited. With probability pt, the agent
teleports (jumps) to a previously visited page (bookmark), initi-
ating a new session. The bookmark with rank R is chosen with
probability P (R) ∝ R−β .

This mechanism mimics uses of frequency ranking in modern
browsers, such as URL completion in the address bar and suggested
starting pages in new windows. The functional form P (R) is mo-
tivated by data on selection among ranked lists of results [7].

In our simulations, browsing occurs on scale-free networks with
N nodes and degree distribution P (k) ∼ k−γ , generated using the
growth model of Fortunato et al. [16]. We used N = 107 nodes,
ensuring a network larger than the number of pages visited in the
empirical data. We also set γ = 2.1 to match the Web and our data
set. To prevent dangling links, we construct this graph with sym-
metric links. Within a session, we simulate the browser’s cache by
recording traffic only when the target page is new to a particular
session. This allows us to measure the number of unique pages vis-
ited in a session, which corresponds to the empirical session size.
We assume that that cached pages are reset between sessions.

Preliminary work examined aggregate system properties; our fo-

Figure 3: Representation of a few typical and representa-
tive session trees from the empirical data (top) and from the
ABC model (bottom). Animations are available at cnets.
indiana.edu/groups/nan/webtraffic.

cus here is on characterizing individual users and sessions. The
simplest hypothesis is that broad distributions of aggregate behav-
ior reflect extreme variability within the traffic generated by single
users, none of whom are typical in the sense of overall traffic. To
capture the diversity of behavior across users, we examine the en-
tropy of each user’s traffic, which directly measures the focus of
a user’s interests. Given an arbitrary number of visits Nv , the en-
tropy is maximum (S = Nv log(Nv)) when Nv pages are visited
once, and minimum (S = 0) when all visits have been paid to a
single page. The distribution of entropy across users is shown in
Fig. 2A. The reference PageRank model produces higher entropy
than observed in the empirical data; a PageRank walker picks start-
ing pages with uniform probability, whereas a real user is more
likely to start from a previously visited page and thus revisit neigh-
boring pages. BookRank encourages such behavior, and we indeed
observe lower entropy values in Fig. 2A. However, BookRank un-
derestimates the entropy and its variability across users.

We can also consider the distributions that characterize logical
sessions, namely the size (number of unique pages) and depth (dis-
tance from a session’s starting page) distributions. Figs. 2B and C
show that both empirical distributions are rather broad, spanning
three orders of magnitude, revealing a surprisingly large propor-
tion of very long sessions. In contrast, both the PageRank and
BookRank reference models generate very short sessions. The prob-
abilistic teleportation mechanism that determines when a PageRank
walker starts a new session is incapable of capturing broadly dis-
tributed session sizes. In fact, session size is upper-bounded by the
length ` (number of clicks) of a session, which exhibits a narrow,
exponential distribution P (`) ∼ (1 − pt)

`. Note that the expo-
nentially short sessions are not inconsistent with the high entropy
of PageRank walkers (Fig. 2A), which is a result of the frequent
jumps to random targets rather than the browsing behavior.

4. ABC MODEL
The empirical analysis in the previous section demonstrates that

a more sophisticated model of user behavior is needed to capture
individual navigation patterns. We build upon the BookRank model
by adding two additional ingredients.

First, we provide agents with a backtracking mechanism, needed
to capture the tree-like structure of sessions (cf. top row of Fig. 3).
Our data indicate that the incoming and outgoing traffic of a site
are seldom equal, but have a ratio distributed over many orders of
magnitude [12]. Teleportation alone cannot explain this violation
of flow conservation, demonstrating that users’ browsing sessions
have many branches. Finally, our prior results show that the average
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branch factor of session trees is almost two. All of these observa-
tions are consistent with the use of tabs and the back button.

The second ingredient concerns the fact that the BookRank model
fails to predict individual statistics: all agents are identical, session
size has a narrow, exponential distribution; and the entropy distri-
bution is unsatisfactory. In the real world, the duration of a session
depends on the individual intentions (goals) and interests of a user.
Visiting relevant pages, those whose topics match the user’s inter-
ests, will lead to more clicks and thus longer sessions. We therefore
introduce agents with distinct interests and page topicality into the
model. An agent spends attention when navigating to a new page
and gains attention when visiting pages that match the user’s inter-
ests. To model this, each agent stores some “energy” (units of atten-
tion) while browsing. Visiting a new page incurs higher energy cost
than going back to a previously visited page. Known pages yield
no energy, while unseen pages increase the energy store by some
random amount that depends on the page’s relevance to the agent.
Agents continue to browse until they run out of energy, whereupon
they start a new session.

We call the resulting model ABC for its main ingredients: agents,
bookmarks and clicks. Clicks are driven by the topicality of pages
and agent interests, in a way inspired by InfoSpiders [14], which
were adaptive Web crawlers driven by similarity between search
topics and page content. Better matches led to more energy and
more exploration of local link neighborhoods. Irrelevant pages led
to agents running out of energy and dying, so that resources would
be allocated to more promising neighborhoods. In ABC, this idea is
used to model browsing behavior, as shown in Fig. 1C. Each agent
starts at a random page with an initial amount of energy E0.

At each time step, if E ≤ 0, the agent starts a new session
by teleporting to a bookmark chosen as in BookRank. Otherwise,
the agent continues the current session, following a link from the
present node. With probability pb, the back button is used, leading
back to the previous page, and the agent’s energy is decreased by
a fixed cost cb. Otherwise, a forward link is clicked with uniform
probability. The agent’s energy is updated to E − cf + ∆, where
cf is a fixed cost and ∆ is a stochastic value representing the new
page’s relevance to the user. As in BookRank, the bookmark list is
updated with new pages and ranked by visit frequency.

The dynamic variable ∆ in the ABC model is a measure of rel-
evance of a page to a user’s interests. The simplest way to model
relevance is by a random variable, in which case stored energy be-
haves as a random walk, and the session duration ` (number of
clicks until E = 0) has a power-law tail P (`) ∼ `−3/2 [9]. How-
ever, our empirical results suggest a larger exponent [11]: we know
that content similarity between two pages is correlated with their
graph distance, as is the change that a page is relevant to some given
topic [6, 13]. Neighbor pages are likely to be related topically, and
the relevance of page t to a user is related to the relevance of a page
r that links to t. To capture such topical locality, we introduce cor-
relations between the ∆ values of consecutively visited pages. For
the starting page we use an initial value ∆0 = 1. Then, when a
page t is first visited in a given session, we set ∆t = ∆r(1 + ε),
where r is the referrer page, ε is a uniform random variable in
[−η, η], and η controls the degree of topical locality. In a new
session we assume a page can again provide energy, even if it was
visited in a previous session. However, it will yield different energy
in different sessions, reflecting changing interests.

5. MODEL EVALUATION
We ran two sets of simulations of ABC using distinct scale-free

graphs. One (G1) is the artificial network discussed in § 3; the sec-
ond (G2) is derived from an independent subset of the Web graph

based on the largest component from a traffic network generated
by the activity of about 100,000 people[12]. G2 is based on three
weeks of traffic in November 2009; it has N = 8.14 × 106 nodes
and the same degree distribution, with exponent γ ≈ 2.1.

Within each session we simulate the browser’s cache so that we
can compare the number of unique pages visited by the model
agents directly to the empirical session size.

The proposed models have various parameters. In prior work [16],
we have shown that the distribution of traffic with empty referrer
generated by our models is related to the parameter β. Namely, the
distribution is well approximated by a power law P (T0) ∼ T−α

0 ,
where α = 1 + 1/β. Empirical study shows that α ≈ 1.75 for the
Web, so we set β = 1.33. The back button probability pb = 0.5
is also taken empirically. The initial energy E0 and the forward
and backward costs cf and cb are closely related and control ses-
sion durations. We therefore set E0 = 0.5 arbitrarily and use an
energy balance argument to find suitable values of the costs. Em-
pirically, the average session size is close to two pages. The net
loss per click of an agent is −δE = pbcb + (1 − pb)(cf − 〈∆〉)
where 〈∆〉 = 1 is the expected value from a new page. By set-
ting cf = 1 and cb = 0.5, we obtain an expected session size
1−(1−pb)E0/δE = 2. In general, higher costs lead to shorter ses-
sions and lower entropy. We explored the sensitivity of the model
to the topical locality parameter η through simulation, settling on
η = 0.15. Smaller values give all pages similar relevance, making
session distributions too narrow. Larger values imply more noise
(absence of topical locality), making them too broad. The results
shown below refer to this combination of parameters.

The number of users in the simulation, and the number of ses-
sions for each user, are taken from the empirical data. Because the
model is computationally intensive, we partitioned the simulated
users into work queues of roughly equal session counts, which we
executed in parallel on a high-performance computing cluster.

The simulations of the ABC model users generate session trees
that can be compared visually to those in the empirical data, as
shown in Fig. 3. For a more quantitative evaluation of our model,
we compare its results with empirical findings described in § 3. For
each of the distributions discussed earlier, we also compare ABC
with the reference BookRank model. The latter is simulated on the
artificial G1 network.

Let us consider how our model captures the behavior of single
users. The entropy distribution across users is shown in Fig. 4A,
where the model predictions are compared with the distribution
found in the empirical data. The ABC model yields entropy dis-
tributions that are somewhat sensitive to the underlying network,
but that in any case fit the empirical entropy data much better than
BookRank, in terms of both the location of the peak and the vari-
ability across users. This result suggests that bookmark memory,
back button, and topicality are crucial ingredients in explaining the
focused habits of real users.

Having characterized traffic patterns from aggregating across user
sessions, we can study the sessions one by one and analyze their
statistical properties. In Fig. 4B, we show the distribution of session
size as generated by the ABC model. The user interests and topi-
cal locality ingredients account for the broad distribution of session
size, capturing that of the empirical data much better that the short
sessions generated by the BookRank reference model. Agents visit-
ing relevant pages tend to keep browsing, and relevant pages tend to
lead to other interesting pages, explaining the longer sessions. We
argue that the diversity apparent in the aggregate measures of traffic
is a consequence of this diversity of individual interests rather than
the behavior of extremely eclectic users who visit a wide variety of
Web sites—as shown by the narrow distribution of entropy.
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Figure 4: Distributions of user entropy (A), session size (B), and
session depth (C) generated by ABC, with baseline comparison.

The entropy distribution discussed above depends not only on
session length, but also on how far each user navigates away from
the initial bookmark where a session is initiated. One way of an-
alyzing this is by the distribution of session depth, as shown in
Fig. 4C. The agreement between the empirical data and the ABC
model is excellent and significantly better than the one observed
with the BookRank baseline. Once again topicality is shown to be
a key ingredient to understand real user behavior on the Web.

6. CONCLUSIONS
Previous studies have shown that Markovian processes such as

PageRank cannot explain many aggregate patterns observed in real
Web traffic, especially the diversity of session starting points, link
traffic, and the session dimensions. Furthermore, despite such di-
verse aggregate measurements, individual behaviors are quite fo-
cused, calling for a non-Markovian agent-based model. Our ABC
model is able to reproduce aggregate traffic patterns while offering
a mechanism that can generate key properties of logical sessions.
We can thus argue that the diversity apparent in page, link, and
bookmark traffic is a consequence of the diversity of individual in-
terests rather than the behavior of very eclectic users.

The ABC model is more complex than prior models such as
PageRank or BookRank. However, its predictive power suggests
that bookmarks, tabbed browsing, and topicality are relevant fea-
tures of how we browse the Web. In addition to the descriptive
power of ABC, our results may lead to more sophisticated and ef-
fective ranking and crawling algorithms. While we have attempted
to make reasonable and realistic choices for the parameters of ABC,
further work is needed to achieve a more complete understanding
of parameter space. We know that network size, costs, and topi-
cal locality do play a key role in modulating the balance between
individual diversity (entropy) and session size. While ABC is a
clear step forward, it still shares some limitations present in pre-
vious efforts, especially the uniform choice among outgoing links
from a page. This may account for the imperfect match between
the entropies of our model agents and those of actual users.
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