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Abstract — Recent developments of the multilayer paradigm include efforts to understand the
role played by the presence of several layers on the dynamics of processes running on the networks.
The possible existence of new phenomena associated to the richer multilayer topology has been

discussed and examples of these differences have been systematically searched for.

Here, we

show that the interconnectivity of the layers may have an important impact on the speed of the
dynamics run in the network and that microscopic changes such as the addition of one single inter-
layer link can notably affect the arrival at a global stationary state. As a practical testbed, these
results obtained with spectral techniques are confirmed with a Kuramoto dynamics for which the
synchronization consistently accelerates after the addition of single inter-layer links.

Copyright © EPLA, 2017

Introduction. — The ubiquity of processes naturally
described by dynamics on networks raises important issues
on the role played by network structure on the emergence
of collective phenomena. It has been shown that spec-
tral analysis of the associated adjacency and Laplacian
matrices can offer insights into a variety of fundamental
phenomena such as those relying upon spreading or diffu-
sion mechanisms [1-3]. In particular, spectral methods are
the basis to characterize synchronization and random walk
diffusion in networks [4-7]. The second smallest eigen-
value A5 is known to be related to the timescale to attain
synchronization [8] and consensus [9], and its inverse is
often interpreted as the “proper time” of the system to
relax [10]. This quantity, which, depending on the liter-
ature, is known as “algebraic connectivity” or “spectral
gap”, is also indicative of the time of diffusion [11]. While
the role of Ay in “simple” graphs is well understood, more
effort is needed to characterize its role and behavior in
more realistic (and therefore complex) contexts.

One such novel framework is that of a multilayer net-
work [12-14]. Its usefulness extends from finance [15-17]
and mobility [18,19], to epidemics [20,21] and societal
dynamics [22-28]. The multilayer scenario is ostensi-
bly non-trivial, in the sense that the phenomena ob-
served on this system of interconnected networks cannot
be straightforwardly reduced to an aggregate network [29].

The implication is that the multilayer structure plays a
fundamental role in diffusive processes, and that, there-
fore, its effect on A5 is a pertinent and open issue.

Diffusion on a multiplex, that is, a multilayer whose IV
nodes connect univocally across all layers, was considered
in refs. [30,31]. By varying the inter-layer diffusion con-
stant, these works found boundaries of Ay for the multiplex
in terms of the values for individual layers (see also [32]).
For a general weighted two-layer multiplex with a vary-
ing inter-layer link weight p, these results were rephrased
in terms of a structural transition [33]: it was found that
below some critical p., Aa(p) ~ 2p, while for larger p the
algebraic connectivity approaches an asymptote given by
Ly = %)\2 (L1 + L3), where L4 2 are the Laplacian matri-
ces of the two layers and \o(L; 4 L) refers to the spectral
gap of the multilayer network. The changing character
of the functional growth of Ay suggests the existence of
two regimes, an “underconnected” one with the two layers
functioning autonomously, and a “multiplex” one where
the inter-layer connectivity plays the dominant role. It
has been noted that the presence of the point of inflec-
tion p. might follow from linear algebra arguments [34],
and, depending on the topology of the inlayer networks,
pe may tend to zero in the limit of N — oo [35]. It is still
under study how significant this change is in describing
the observed changes in the dynamic timescales [36].
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This work extends the analysis of multiplex timescales
to cover the effect of the specific type of inter-layer cou-
pling. Instead of gradually tuning up the intensity of inter-
layer links p, we now switch on the inter-layer links at unit
intensity one by one. Our strategy of considering binary
weight on the inter-layer links corresponds to a natural
situation where these links are either absent or present,
and where one can preferentially control the amount, and
the placement, of such links. Note that this changes the
framework, which passes from multiplex to more general
multilayer networks. Spectral properties resulting from
such inter-layer link sequences, and their placement, were
considered in [10]. The authors studied identical partially
coupled networks, and found that the trends of average
algebraic connectivity showed a qualitative change at an
(analytically derivable) minimum number of inter-layer
links, depending on the placement of their end points. The
authors of [37] elucidated the optimal relation between
the similarity of layers and the weight of inter-layer links,
given some minimization constraint. Here we consider
non-identical, general layers (see ref. [38] for the study
of a multiplex with widely different inter-layer structure),
and instead focus on the effect of the addition of inter-
layer links to individual systems. We find that Aa2(q) of
the fraction ¢ of such an inter-layer connection sequence
is characterized by leaps, implying sudden decreases in the
timescales of the resulting multilayer. We characterize the
statistics of these jumps and elucidate the way in which
the layer degree correlation [39,40] affects them. Our re-
sults show that not only are highly correlated multilay-
ers connected with high intensities on average slower than
anti-correlated multilayer networks, but that the statis-
tics of jumps are qualitatively different for distinct types
of ordering. Finally, we validate our findings by running
Kuramoto dynamics on the multilayers, and verifying that
Ao does indeed inform on the scaling of the approach to
the fully synchronized state.

Multilayer networks. — The first step is to describe
how the networks used in the analysis are built. Inspired
by the construction of multiplexes, we consider multilay-
ers formed of statistically equivalent networks with the
same number of nodes N on each layer. For simplicity,
the networks are formed of only two layers G; and G,
which along with the inter-layer connections constitute
the multilayer G. In each of the layers, the network is
built using a Molloy-Reed configurational algorithm with
~v = 2.5 [41] and a weight of unity on each intra-layer link.
The inter-layer edges connect a fraction ¢ of the N nodes
of the two layers with an intensity p. Three procedures
to draw inter-layer connections are considered depending
on the inlayer number of connection of the nodes (degree)
(see fig. 1). The first one is simply uncorrelated (UnC)
regardless of the nodes inlayer degrees. This is the base-
line scenario and has been profusely used in the litera-
ture. The other two procedures include some correlation
between the degrees of the nodes connected across layers.

Interlayer Correlation Sequence Type
Uncorrelated (UnC) Random
Positively Correlated (PC) Random, Ascending, Descending
Negatively Correlated (NC) Random, Ordered
/Pc ) ) ¢ NC E
K ascending descending #y ordered

Fig. 1: (Color online) Some connection sequence schema for a
positively correlated and a negatively correlated multilayer.

The positively correlated (PC) method preferentially con-
nects high-degree nodes in one layer G; with their coun-
terparts in the other layer G5. Conversely, the negatively
correlated (NC) procedure establishes links between high-
degree nodes in G; and low-degree nodes in Gy and vice
versa. Within the different categories of correlations, the
inter-layer links can be drawn at random or following some
order based on the nodes inlayer degrees. The possible se-
quence types corresponding to each layer correlation are
shown in fig. 1. For a PC multilayer, an ascending se-
quence connects node pairs starting from those that have
the lowest degree, the descending sequence starts from the
node pairs with the highest degree. In a NC multilayer the
ordered sequence establishes connections between high-
degree nodes on one layer and the low-degree nodes in
another first. Thus, to create a multilayer M (p, ¢) we must
specify: a) the size N of each layer, b) the layer correlation
strategy (UnC, PC or NC), ¢) the strength of inter-layer
connections p and the fraction of connected nodes ¢, and
d) the sequence type that gives the order in which layers
become interconnected.

Building the supra-Laplacian. — For each realiza-
tion of M (p, q), we compute the algebraic connectivity Ag
of the supra-Laplacian £. The procedure for constructing
the supra-Laplacian of a multiplex with ¢ = 1 is detailed

in [33], yielding
)
Lo+ pl ’

where L stands for the Laplacian of the layer Gy, sepa-
rately, and 1 is the unit N x N matrix. In order to gen-
eralize the formalism to a situation in which some nodes
are not connected across layers (¢ # 1), we assign to such
nodes, e.g., node 7 in Gy, a partner down in Gy (arbitrarily,
the node with the same index 7), but set the correspond-
ing inter-layer link intensity equal to zero, p; = 0. Thus, a
multilayer M (p, q) will have a supra-Laplacian where the
elements in the matrices pl corresponding to positions i
are zero instead of p.

L=

<£1 +pl 1)

_p]l

Initial results. — The behavior of Ay for different mul-
tilayer structures M (p, q) is shown in fig. 2 as a function of
the inter-layer link intensity p. In fig. 2(a), the multilayer
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Fig. 2: (Color online) Az for a N = 100 scale-free multilayers.
(a) Mean and standard deviation over realizations (shaded re-
gion) of A2 of M(p,q = 1) as a function of p with positive (PC),
negative (NC), and neutral (UnC) inter-layer correlations, for
100 realizations. (b) Average Az for the PC case of (a) (labelled
“intensity-based”) as a function of p, as well as the trends of A2
as a function of ¢ for multilayers M (p = 1,q) with PC layers
and three different connection sequences, all for 10° realiza-
tions. Inset: standard deviation of the respective curves across
the realizations.

is complete (¢ = 1 so the network is a multiplex) and the
results of [33] are recovered. The algebraic connectivity
displays an inflection point for a particular value of p, p.,
around 0.2 regardless of the correlations between the de-
grees of the nodes in both layers. This point marks the
beginning of a different type of dynamics, passing from a
single-layer driving one for p < p, to an integrated net-
work one for larger p. The correlations do play a role in
the second integrated regime where they influence the re-
laxation time of the system (slower for PC and faster for
NC with respect to the uncorrelated baseline). Increasing
the system size N only magnifies these differences. Inter-
estingly, after the inflection point the fluctuations in A,
between realizations of the multilayer increase and remain
constant with increasing p. The particular position of p,
displays a dependence on the system size in the range ex-
plored here numerically, but the presence of this regime
of high X9 variability across realizations always appears.
It is worth noting as well that in contrast to ordinary
phase transitions the increase in ¢ is not constrained to
the neighborhood of p,.

If the intensity of the inter-layer connections is kept con-
stant, p = 1, and ¢ is varied instead, these curves notably
change and their shape depends on the particular order
implemented in the inter-layer node connection to build
the multilayer (see fig. 2(b)). A2 is lower for a multilayer
network with fewer inter-layer links (with heavier weight of
unity) than for a multiplex with fully interconnected layers
but at small intensities. That is to some extent intuitive,
as the missing inter-layer connections might have been
much more necessary for the “emergent” multilayer, and
having them present albeit at a small intensity would con-
nect the layer more strongly. In addition, the three possi-
ble sequences behave differently depending on ¢. For small
q, until about ¢ < ¢ = p,, they increase linearly with gq.
The descending sequence results in a consistently greater
A2, implying a faster dynamics on the multilayer (this
seems to be a generic result [42]). This is manifestly not
the case at high ¢ where the situation reverses. Besides the
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Fig. 3: (Color online) Partial connectivity sequences in posi-
tively correlated scale-free multilayers with N = 100, p = 1.
(a) and (b): A2 as a function of ¢ for the ascending and de-
scending degree sequences. The plots contain ten realization
in total although the curves are displayed realization by real-
ization. (c) Probability density distribution of the differences
between consecutive values of A2 as a new link is introduced for
the three different sequence types D (descending), A (ascend-
ing) and R (random), computed over 10°® realizations at ¢ = 0.9
(main plot), ¢ = 0.2 (top right inset) and ¢ = 0.05 (bottom left
inset). The main plot and right inset are in log-log scale, the
left inset is in linear scale. (d) and (e): probability P. to see
jumps higher than e, computed at each ¢ value over 1000 re-
alizations, for each of the ascending, descending and neutral
sequences.

average Ao, o displays a similar behavior as in the case of
q = 1: beyond p, it increases and remains high afterward,
although with peculiarities due to the sequence and corre-
lations of the inter-layer connections (see inset of fig. 2(b)).

Leaps in the largest eigenvalue. — On single net-
work realizations instead of on average properties, we find
what is the most important result of this work. The multi-
layer M (p = 1, ¢) from the previous section is constructed
by adding inter-layer links of unit weight one by one un-
til their fraction is equal to ¢. This process accumulates
microscopic changes to end up in a macroscopic configura-
tion of the multilayer networks. Naively, one could expect
one of such microscopic changes to be innocuous to the
macroscopic picture and, consequently, to have a very mi-
nor impact on the dynamics of any process taking place on
the multilayer. However, this expectation is wrong as can
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Fig. 4: (Color online) Validation of the effects of the A2 jumps on the timescales of processes running on a PC multilayer
M(p =1,q) with N = 100 generated with a sequence descending in degree. (a) A2 and the numeric derivative of In(1 — R(t))
as a function of ¢. (b) A graphical representation of the multilayer M(p = 1,¢") in concentric circles, with nodes arranged
counterclockwise and their size and location proportional to their degree, where ¢* is from the set of lines in panel (a) with the
corresponding colors. (c¢) The temporal relaxation of the order parameter In(1 — R(t)) for each ¢*.

be seen in fig. 3(a) and (b) on an example with a positively
correlated multilayer. The value of Ay experiences signif-
icant jumps after the introduction of a single link across
layers. The smooth behavior characteristic of the absence
of jumps in Ay is only visible in a sparsely interconnected
multilayers (lower ¢), where for some range (but depend-
ing on the sequence) the increase is linear, A2(q) o gq.
Although the frequency and location of A\s(g) discontinu-
ities depend on the specific realization, on average they
occur at some large q. Since Ay is a global feature of the
multilayer, the “offending” link is intrinsically connected
to some global property of the layers, or to the sequences
themselves. We have checked whether this relates to the
betweeness of the new added link, but the results are not
positive. Such sudden leaps reflect the precarious nature
of adding final inter-layer connections, implying that after
some minimal number of connections has been set, it be-
comes very hard to predict the exact effect of the addition
of each inter-layer link.

The distribution of jumps is included in fig. 3(c), where
beyond the sequence the width of the distribution is con-
trolled by the final value of q. Varying this parameter, one
can observe long tailed distributions in the changes of A,
spanning several orders of magnitude as in the main plot
or in the top-right inset, or more constrained jump distri-
butions as those of the left-bottom inset for smaller values
of q. For most of the values of ¢, the dominating effect is
the non-trivial long-tailed distributions. To explore this
further, we introduce a cutoff ¢ and measure the proba-
bility P.(q) to have an increase in Ay by at least € at the
addition of the subsequent link. At intermediate € values
(fig. 3(d)), it identifies that the main difference between
the ascending and the descending sequence is not that the
former has fewer jumps (which could have been expected
from the lower standard deviation), but that the jumps
are centered at some ¢, with a well-defined mean. The
descending sequence and the random one, on the other
hand, show a completely different profile of a monotoni-
cally increasing jump probability. If the last node pairs to
be interconnected are those with the lowest degrees, their
addition is much more likely to case a sudden jump in

the speeds of the diffusion, than if the last interconnected
nodes had high degree. That, however, is because in the
latter case the multilayer would already have been rela-
tively fast. The reason lies in another curious observation
shown in fig. 3(e). The probability of at least a minute
jump is minimized at some ¢ < 1 for the descending and
random sequences, and decreases monotonically for the
ascending one. This lack of change is difficult to achieve
if lower-degree nodes were interconnected first.

Validation. — Calculating Ay implies non-linear opera-
tions and one might wonder if these results were not an ar-
tifact of the numerical methods. To verify their relevance
for dynamical processes occurring on the multilayers, we
run the Kuramoto model and compare the variations in
Ao with the synchronization timescales. Specifically, an
oscillator is placed in each node ¢ of the multilayer with
phase ;. The oscillators have the same natural frequency
and the evolution of their phases is described after linar-
ization by the following equation [43,44]:

0; = Wik (0 — 05),
oy

(2)

where W, are the elements of the adjacency matrix with
the corresponding weights for intra- and inter-layer links.
To ensure an easier measurement of the timescales, the
initial state of the system is set at the value of the eigen-
vector associated with Ay. Under these conditions, the
system approaches synchronization as

1 — R(t) oc =222t (3)
where R is the phase coherence of the population, R =
[> y ¢'% |, and plays the order parameter in the synchro-
nization transition.

In fig. 4, we show how the changes in the spectral gap Ao
actually translates to changes in the relaxation times. In
fig. 4(a), A2 and the inverse relaxation times are displayed
as a function of ¢ for a PC multilayer built in descend-
ing degree sequence. Both coincide as it must be if the
numeric estimation of Ao is appropriate. Several jumps
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can be observed and are marked with vertical lines of dif-
ferent colors and textures. These changes occur after the
introduction of single links as represented in fig. 4(b). The
presence of these single links brings about an important
variation in the macroscopic system relaxation as can be
seen in fig. 4(c). The underlying exponential decays for
a selected range of g values chosen to lie around two sig-
nificant jumps. The observed straight lines imply that o
is well defined as an exponent even in the vicinity of the
jumps, and hence that the decrease in timescales is indeed
abrupt.

Conclusions. — Our results thus show that the jumps
in the algebraic connectivity are not merely a numeric
artifact, but instead correspond to the measured abrupt
decreases in the synchronization timescales of the dynam-
ical system. This ratifies that microscopic changes in the
topological properties of these multilayer networks lead
to effects noticed at a global scale. We also investigated
the characteristics of these offending node pairs whose in-
terconnection causes the jumps, but did not detect any
special local or simple global network feature. The lack
of any correspondence between the degree, and the de-
gree of the neighbors, of the selected nodes points to the
non-trivial nature of the connection between the network
properties of the multilayer nodes and their role as crucial
mediators in enhancing the synchronization time of the
multilayer, and calls for the use of global spectral meth-
ods to determine their location and quantify the possible
effects of their introduction or deletion.
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