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Obtaining insights into human mobility patterns and being able to reproduce
them accurately is of the utmost importance in a wide range of applications
from public health, to transport and urban planning. Still the relationship
between the effort individuals will invest in a trip and the importance of its
purpose is not taken into account in individual mobility models that can be
found in the recent literature. Here, we address this issue by introducing a
model hypothesizing a relation between the importance of a trip and the dis-
tance travelled. In most practical cases, quantifying such importance is
undoable. We overcome this difficulty by focusing on shopping trips (for
which we have empirical data) and by taking the price of items as a proxy.
Our model is able to reproduce the long-tailed distribution in travel distances
empirically observed and to explain the scaling relationship between distance
travelled and item value found in the data.
1. Introduction
Individual human mobility is a complex phenomenon, involving various mech-
anisms interacting at different spatial and temporal scales. These dynamics are
the product of individual behaviours, governed by decisions that may depend
on multiple contextual factors such as economic resources, geography, culture,
norms, habits or life experiences. However, beneath this apparent complexity
lies remarkable temporal and spatial regularities in the way people travel and
interact with their environment [1]. Results obtained in several studies based
on dollar-bill tracking [2], mobile phone data [3], Twitter data [4,5], Foursquare
data [6] and GPS data [7] suggest that the distance Δr between two consecutive
locations follows a heavy-tailed distribution well approximated by a Pareto
function P(Dr) � D�(1þa)

r with 0 < α≤ 1. It has also been shown that individuals
tend to be attracted to popular places [8,9] and to return to previously visited
locations, thus increasing the predictability of individual human movements
[10] and allowing the identification of most visited locations as well as the
characterization of daily commuting patterns [11]. Individual human mobility
patterns are also strongly influenced by geographical constraints [12] but also
by individuals’ socio-economic status [13–15] and social network [16–19].

Based on these empirical observations, several models have been proposed
for modelling individual human mobility patterns. The simplest type describes
human travelling using Lévy flights and continuous time random walks [2,20].
These models give accurate predictions but fail to reproduce some features such
as the individuals’ tendency to revisit locations [3,20,21]. In [21], the authors
propose a new model considering two generic mechanisms: exploration and
preferential return, to decide whether an individual will visit a new place or
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Table 1. Number of users, businesses and transactions in both case
studies. The number of postcodes and inhabitants and the surface area of
the two provinces are also displayed.

statistics Barcelona Madrid

number of postcodes 364 268

number of inhabitants 5 540 925 6 489 680

area (km2) 7733 8022

number of users 269 849 528 719

number of businesses 111 267 108 936

number of transactions 12 993 179 24 507 586
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a previously visited one as his/her next displacement. Going
further in this direction, several models have been proposed
to take into account diverse contextual factors such as the
social context, urban geography and/or type and
popularity of locations [9,11,12,22].

Nonetheless, most of these models focus on stationary
(long-term) mobility, and, most importantly, they do not
take into account the characteristics of the destination such
as the purpose of travel and its importance to the individual.
Indeed, one can assume that an individual will invest time or
money, more generically, effort or amount of ‘energy’ into
a trip according to the value attached to the destination/
objective of this travel. The purpose of a basic trip is the
displacement between home and work, the details of which
have been collected in censuses for decades (in the USA,
for instance, since 1990). The introduction of new GPS-
based technologies have enabled the exploration of the
purpose of other trips since the early 2000s [23,24]. Even
though the relationship between trip cost and destination
importance has been postulated in transport economy, and
more recently in ecology, with the use of travel cost methods
to assess the value of a natural sites based on the time and
travel cost expenses that people spent to visit this site
[25,26], without adequate empirical datasets to explicitly
assess the ‘value’ of a destination this feature is rarely
modelled at an individual scale.

The purpose of this work is to understand the displace-
ment distribution generated by a process in which the trips
have a clear purpose and, therefore, an associated objective
or subjective value v. The main assumption, straightfor-
wardly checked in the data, is that the trips’ length, d,
tends to increase with v. We start by presenting a shopping
mobility dataset that we use in the analysis and in which
we can assign an objective meaning to v as the price of the
purchased items. This dataset contains information on bank
card transactions made in the provinces of Barcelona and
Madrid. Inspired by search processes for wild food resources
in the natural environment [7,27–29], we introduce a human
individual mobility model taking into account the value
given to the trip’s destination through a parameter p,
accounting for the probability of stopping or satisfying a
search and that decreases when the value of v increases.
The model generates trip length distributions that mimic
the empirical ones and it is able to explain the observed scal-
ing relations from the data.
2. Material and methods
2.1. Data
To explore the relationship between travel cost d and the impor-
tance given to its destination v, we analyse a credit card dataset
containing information about 35 million bank card transactions
made by card holders (hereafter called users) of the Banco
Bilbao Vizcaya Argentaria (BBVA) in the province of Barcelona
and Madrid in 2011. Each transaction is characterized by its
amount (in euro currency) and a timestamp. Each transaction
is also linked to a user and a business using anonymized user
and business IDs. Users are identified with an anonymized
user ID and their postcode of residence. In the same way,
businesses are identified with an anonymized business ID, a
business category (accommodation, automotive industry, bars
and restaurants, etc.) and the geographical coordinates of the
credit card terminal (see electronic supplementary material,
table S2 for a full list of the selected business categories). The
mobility habits and the representativeness of the BBVA credit
card users in Barcelona and Madrid have already been investi-
gated in [14,30]. Here, we filtered out users with an average
number of transactions per day higher than three (see the elec-
tronic supplementary material for more details). Only credit
card payments whose amount was inferior to 500 euros have
been considered. Table 1 presents the final number of users,
businesses and transactions analysed in this study.

The probability density function (PDF) of the number of
transactions per user in 2011 and the amount of money spent
per transaction is displayed in figure 1. We observe a strong het-
erogeneity among users regarding the number of transactions.
The median value is 27 and the lower quartile is 8 in both pro-
vinces, the upper quartile is 69 for Barcelona and 66 for
Madrid. Between 10 and 70 euros are spent in 50% of the trans-
actions with a median amount of 30 euros per transaction.

For each transaction, the cost d associated with a trip is esti-
mated with the distance between the user’s postcode of residence
(lon/lat coordinates of the centroid) and the location of the
business in which the transaction occurred (lon/lat of the
credit card terminal). The value v given to the travel purpose is
inferred by the amount of money spent per transaction. The
amount of money spent v is divided into five intervals ([0, 50],
[50, 75], [75, 100], [100, 200], [200, 500]).

2.2. Model
The proposed model can be interpreted as a search process that
stops when a satisfying object (destination) has been found [31].
The rules of the model are outlined in figure 2. We assume that
an individual starts the travel at his/her actual location (at home
or work, for instance). The position of this first location is drawn
at random in a square of lateral size L expressed in kilometres. In
practice, this parameter takes into consideration the geographical
constraints of a case study site (administrative or geological bound-
aries for example). At each step, the individual moves in a random
direction and at a random distance sampled from a Pareto distri-
bution P(l) ¼ al0

al�a�1, where α is the exponent and l0 the
minimum spatial scale considered. At each step, the possibility
of ending the trip is represented by a probability p of fulfilling
the trip’s goal. Note that unlike most of the models described in
the introduction, since only short-range mobility patterns are con-
sidered, our model does not take time into account explicitly. The
probability of stopping p is assumed to have an inverse relation
with the importance given to the trip’s goal v. The higher the
value v associated with the objective of the travel, the longer the
search process (i.e. low value of p) and the higher the distance d
between origin and destination can become. If the purpose of the
trip is a search to buy an object, the individuals would be willing
to exploremore shops or to travel further as the itemprice increases
(buying a car requires more ‘energy’ than a piece of bread). Finally,
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Figure 1. Probability density function of the number of transactions per user in 2011 (a) and the amount of money spent per transaction (b) in Barcelona (green
dots) and Madrid (orange triangles).

time t

time t + 1

P(l) ~ l – (a + 1)
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Figure 2. A schematic diagram of the model. At each step, the individual leaves his/her actual location and moves in a random direction at a distance sample from
a Pareto distribution P(l) ¼ al0

a=laþ1. If the new location falls outside of the square boundaries the sampling process is repeated. According to the value v given
to the trip destination, the individual will then decide to stop or continue his/her journey with a probability p. If the individual decides to end his/her journey the
final destination is drawn at random in a circle of radius r around the last position (green circle).
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when the individual decides to end his/her journey the final des-
tination is drawn at random in a circle of radius r around the last
position. This mechanism is included to take into account the
uncertainty present in the data on the exact position of the retailing
centre. In the case of a more abstract framework, the model could
be simplified bymaking r→ 0 and setting the purchase place in the
current agent’s location.
2.3. Model calibration
The comparison between model and data is based on the PDF of
the distance d between the origin and the destination. The simu-
lated PDF is obtained with 100 000 simulations of the model. The
model has five parameters L, α, l0, r and p. L controls the size of
the modelling area, l0 and r the minimum spatial resolution, α the
jump length and p the users’ tendency to explore the modelling
area. The free parameter l0 and r allows notably to control the
user’s exploration behaviour at a short distance from home.
The numerical values of these five parameters were determined
from the empirical data in two steps and independently for
both provinces. We first adjusted the values of the five par-
ameters by minimizing the Kolmogorov–Smirnov distance
between observed and simulated PDFs of d (all values of v com-
bined). We then adjusted the value of p according to the PDF of d
for each interval of amount of money spent v.
2.4. Model features
Every agent in the model is performing a short Lévy flight in the
limited space provided by a box of side L. To better understand
the model features, it is helpful to take first the limits L→∞, so
there is no spatial constraint. The Lévy flight is not, actually, com-
plete because we introduce a stopping mechanism with p. It
implies that the number of jumps, n, that an agent takes follows
the geometric distribution:

Pn(n) ¼ (1� p)n�1p: (2:1)

The average number of jumps is thus given by 〈n〉 = 1/p. Lower p
means more jumps and, therefore, the potential for longer dis-
tances in the distribution of distance from the origin to the
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Barcelona. The original distributions are shown in (a) and (c), while the normalized distributions obtained by dividing by the median distance �d are in (b)
and (e). In (a) and (b), there is no bounding box, L =∞, while in (c) and (d ) L = 100 km.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200673

4

purchase location, P(d ). Recalling that p will be related to v with
an inverse function, larger v also implies longer distances d. The
distribution P(d ) comes thus from the aggregation of a finite
number n of Lévy jumps. In the limit n→∞, it could be
expressed as a function of the Lévy α-stable distributions. On
the contrary, for small n the analytical expression of P(d ) does
not correspond to Lévy’s generalization of the central limit theo-
rem. In any case, there is an inverse relation between the median
of the distance d, �d and p. Examples of the distributions P(d ) for
different values of p can be seen in figure 3a. The range of small d
values is flattened by the presence of a minimal scale (controlled
by l0 and r), whereas as expected a long power-law like tail
appears for large d. In this case, there is no other characteristic
scales in the model beyond the small scale and �d as shown by
the collapse of the curves for different p obtained dividing the
x-axis by �d and normalizing the distributions again (figure 3b).

The picture changes if L and, consequently, the bounding box
is finite. The limited Lévy flights are then occurring inside a con-
strained space and those jumping outside are not considered.
This introduces a maximum scale in the P(d ) distributions as
can be seen in figure 3c, which manifests in a fast (exponential-
like) decay for large values of d. The curves still maintained
the power law-like properties and the possibility of collapse
dividing d by �d, but in a restricted domain of d values (figure 3d ).
3. Results
We start by exploring empirically the relationship between the
travel distance d and the importance given to its destination v.
Figure 4 displays the PDF of the distance between the user’s
home and the location of the business in which the transaction
occurred according to the amount of money spent v divided
into five intervals. Several regimes can be observed. First, the
probability to travel a certain distance to make a purchase
increases, reaching a maximum between 500m and 1 km, and,
then, the probability starts to decrease, slowly at first, and then
more rapidly, exhibiting a power-law-like decay. Finally, after
20–50 km the province boundaries act as a natural cut-off in
the distribution (our data are limited to single provinces). The
shape of distribution is very similar for each range of amount
of money spent. It seems, however, that the distance travelled
globally increases with the amount of money spent.

Figure 5a shows for each range of values v the median dis-
tance travelled �d as a function of the median amount of
money spent �v. Although the distance travelled is globally
higher in Madrid than in Barcelona, the distance travelled
increases with the amount of money spent following the scal-
ing relationship �d � �vg in both provinces. We obtain a value
γ = 0.23 ± 0.02 for Barcelona and γ = 0.15 ± 0.03 for Madrid
estimated with a log-log regression. It is interesting to note
that this relation between d and v seems to be the unique
driver of the differences observed between the PDFs in
figure 4. Recalling the collapse in the model in figure 3, as
can be seen in figure 5b a scaling factor depending only on
�d can be used to visually collapse all the PDFs shown in
figure 5b into a single curve (except for the maximum
values constrained by the provinces’ geographical bound-
aries). This suggests that the mechanisms underlying trip
generation are the same for all price ranges and the only
difference is a characteristic distance �d, which is a function
of the price v of the item purchased.
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Nevertheless, we need to verify that this result holds
whatever the spatial distributions and types of users and
businesses. To ensure that it is the case, we plot in figure 6
the distribution of the exponent γ estimated with a log-log
model for each postcode in both provinces. The value of
γ is globally strictly higher than 0, suggesting that the positive
correlation between �d and �v does not depend of the user’s
postcode of residence. Moreover, this positive correlation
between the two quantities is independent of the users’ socio-
demographic characteristics (gender, age and occupation)
and the business categories (see electronic supplementary
material for more details).

We now focus on the results obtained with our model in
order to reproduce and explain the relationship between d
and v observed in the data. As described in Material and
methods, we first consider the distribution of all the amounts
combined in order to calibrate the five parameters. As can be
seen in figure 7, the fit is quite good. We obtain similar results
in both provinces. The modelling area represented by a
square of lateral size L is bigger in Barcelona (100 km) than
in Madrid (75 km). The parameter α, exponent of the Pareto
distribution, is equal to 0.6 which is consistent with values
obtained in other studies [2–7]. We obtain a value of p
equal to 0.3 in Barcelona and 0.25 in Madrid, this value,
between 0 and 1, has an inverse relation to the energy that
people are willing to invest in order to go shopping in both
provinces.
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Finally, we explore the behaviour of p according to the
median amount of money spent �v. The results obtained are
plotted in figure 8a. As expected, the value of p decreases
with increasing v, which implies that the distance travelled
grows with the price of the item to be purchased. Further-
more, we find that a scaling relation of the type p � �v�b

adjusts well to the data. We obtain a value β = 0.24 ± 0.01
for Barcelona and β = 0.14 ± 0.02 for Madrid estimated with
a log-log regression. However, keep in mind that the model
does not impose a given relation between p and �v, it can be
general with different type of data leading to diverse relation-
ships (or exponents if the power-law scaling holds). In our
case, both �d and p can be expressed as scaling functions of
�v. It is, therefore, important to understand the relation
between the direct observable in mobility �d and our
model’s p. If the basic displacement distribution had a finite
second moment, i.e. the movement was a random walk in
2D, it would have been possible to find analytical approxi-
mations for the final distance. However, this task becomes
complex with a finite number of steps in a Lévy flight.
Therefore, to analyse the relationship between γ and β, we
assume a relation p � �v�b to generate five p values for a given
β value. We normalize the five p values in order to preserve
the average value observed in the data (i.e. values displayed
in figure 8a). We then simulate the five �d values associated
with the p values with our model (using the calibrated L, α,
l0 and r values for both provinces). We finally estimate the
exponent γ from �d � �vg and compare the values of γ obtained
versus those of the corresponding β. The results of this exer-
cise are shown in figure 8b. The relation is linear and close to
the identity (approx. 0.9) but we note a slight difference
between the results obtained with the model parameteriza-
tion used for Barcelona and Madrid. This is mainly due to
the size of modelling area L. The grey dashed line in figure
8b represents the relationship between γ and β obtained
with an infinite modelling area. The effect of increasing the
value of L on the slope of the linear relationship is also
exposed in figure 8c. We observe that the slope ranges from
0.85 to 1.1 for values of L lower than 500 km, after that it
increases slowly until reaching the asymptotic value 1.33.
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This change in the slope is essentially due to the progressive
reduction of the sum of Lévy flights’ truncation. It is worth
noting that the slope obtained with values of L reflecting an
intra-urban mobility scale are very closed to one. An equality
between γ and β is also consistent with the empirical obser-
vations made in Barcelona and Madrid (figure 8b),
suggesting that the probability to stop the journey could be
inversely proportional to the median distance travelled
(p � 1=�d).
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4. Discussion
In summary, we introduced a model of individual human
mobility patterns able to reproduce and explain the relation-
ship between the travel cost associated with a trip and the
importance given to its destination observed in credit card
data recorded in the provinces of Barcelona and Madrid in
2011. In particular, we have shown that the distances between
place of residence and place of purchase increase with the
amount of money spent following a similar scaling relation-
ship in both provinces. The model that we propose is able
to reproduce these behaviours and also to mimic the final
scaling relation.

Overall, we observed good agreement between the results
obtained in Barcelona and Madrid. Both provinces show simi-
lar trends in the relationship between the amount of money
spent and distance travelled. The exponent values observed
in the scaling relationships are of the same order of magnitude
in both provinces and the calibrated parameter values obtained
with the model are also very similar. More research is needed
to elucidate whether the patterns found are common to other
countries and cities, and, specially, whether the small differ-
ences are related to the diverse city shapes or the
geographical structure of the administrative units.

4.1. Limitations of the study
The results obtained provide confidence in the robustness of
the scaling relationship observed in the data by assessing the
effect of the users’ characteristics and business categories on
the exponent of the scaling relationship in the two provinces.
However, it will be important to evaluate our hypothesis and
our model on case studies coming from other countries/con-
tinents and on different data sources. A limitation of the
study lies in the nature of our data samples, which were
spatially constrained by the province boundaries. This
forces us to include a bounding box in the model and restricts
our capability to reach analytical results. As in [30], we also
assumed that every shopping trip starts at home and ends
at the place of purchase without considering more compli-
cated case including sequences of purchases. Nevertheless,
we replicated the analysis considering, for each user, only
days with a unique transaction and we obtained very similar
results (see electronic supplementary material, figure S3).
Finally, online shopping could be also a handicap for our
analysis. Unfortunately, we cannot distinguish online and off-
line shops in our data. Online shopping has become more
relevant with time, its presence was not so strong in the shop-
ping habits of 2011 as it is today, and the retailer must be
included in the same province is a strict limitation for most
of the online shops. In the online purchases, the distance
would not be an important variable and it would not show
a clear relation with v, given that it is possible to buy equally
items of any price.
4.2. Concluding remarks
To conclude, this study is a first attempt to quantify the
relationship between travel cost associated with a trip and
importance given to its destination. The results obtained in
this study shed new light on the modelling of human mobi-
lity patterns at an individual scale. We are quite aware that
trip motivations are very complicated to quantify but we
truly believe that it is an important topic. Accurate modelling
of daily human mobility patterns in cites is crucial in a wide
range of applications. Obtaining better insight into the
relationship between trip characteristics and travel motiv-
ations would enable better understanding of urban
dynamics in order to optimize cities. We hope that more
and more (hopefully open) data will be made available in
years to come to study the importance of trip destination
and its role in the modelling of human mobility patterns.
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