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Global predictions for the risk of establishment of
Pierce’s disease of grapevines
Alex Giménez-Romero 1, Javier Galván1, Marina Montesinos2, Joan Bauzà 3, Martin Godefroid4,

Alberto Fereres4, José J. Ramasco 1, Manuel A. Matías 1 & Eduardo Moralejo 2✉

The vector-borne bacterium Xylella fastidiosa is responsible for Pierce’s disease (PD), a lethal

grapevine disease that originated in the Americas. The international plant trade is expanding

the geographic range of this pathogen, posing a new threat to viticulture worldwide. To

assess the potential incidence of PD, we have built a dynamic epidemiological model based

on the response of 36 grapevine varieties to the pathogen in inoculation assays and on the

vectors’ distribution when this information is available. Key temperature-driven epidemio-

logical processes, such as PD symptom development and recovery, are mechanistically

modelled. Integrating into the model high-resolution spatiotemporal climatic data from 1981

onward and different infectivity (R0) scenarios, we show how the main wine-producing areas

thrive mostly in non-risk, transient, or epidemic-risk zones with potentially low growth rates

in PD incidence. Epidemic-risk zones with moderate to high growth rates are currently

marginal outside the US. However, a global expansion of epidemic-risk zones coupled with

small increments in the disease growth rate is projected for 2050. Our study globally

downscales the risk of PD establishment while highlighting the importance of considering

climate variability, vector distribution, and an invasive criterion as factors to obtain better PD

risk maps.
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Emerging plant pathogens and pests are costly both eco-
nomically and environmentally for society1–4. Among
valuable crops recurrently affected by emerging diseases, the

grapevine occupies a remarkable place in the history of plant
pathology5–8. Nowadays, Pierce’s disease (PD) is considered a
potential major threat to winegrowers worldwide9. The annual
economic burden in California alone has been estimated at over
$100 million10, and the disease is a well-recognised limiting factor
in the cultivation of Vitis vinifera in the southeastern US9. In
Europe, despite strict quarantine measures to protect the wine
industry (Directive 2000/29/EC), PD has recently been estab-
lished for the first time in vineyards on the island of Majorca,
Spain11,12. This finding, alongside the detection of PD in
Taiwan13, has raised concerns about its possible spread to con-
tinental Europe and other wine-producing regions worldwide.

The causal agent of PD14, the bacterium Xylella fastidiosa
(Xf)15, is native to the Americas where it also causes vector-borne
diseases on many economically important crops, such as citrus,
almond, coffee and olive trees16,17. Xf is phylogenetically sub-
divided into three major monophyletic clades that correspond to
the three formally recognised subspecies: fastidiosa, multiplex and
pauca, native from Central, North, and South America,
respectively18,19. Although as a taxonomic unit Xf infects more
than 560 plant species20, it also shows genetic variation among
subspecies and sequence types (STs) in both host specificity and
host range21. Since 2013, diverse STs of the three subspecies have
been detected in Europe mainly associated with crop and orna-
mental plants22–24; among these, the clonal lineage of the subsp.
fastidiosa responsible for PD (hereafter termed XfPD). The same
genetic lineage also causes almond leaf scorch disease in
California25 and Majorca (Spain)26, where it is widespread in
almond plantations and vineyards, affecting more than 23 grape
varieties12.

A key trait in the understanding of Xf ’s invasive potential is its
capacity of being transmitted non-specifically by xylem sap-feeding
insects belonging to sharpshooter leafhoppers (Hemiptera: Cica-
dellinae) and spittlebugs (Hemiptera: superfamily Cercopidae)27,28—
e.g., at least eight species transmit PD in the southeastern US29. Such
non-specificity would have facilitated XfPD invasion after being
unwittingly brought to Majorca around 1993 with infected almond
cuttings from California and its spread thereafter to grapevines
through local populations of the meadow spittlebug, Philaenus
spumarius26. Recently, the role of P. spumarius in the transmission of
PD in Majorca has been demonstrated12 and its involvement in
epidemic outbreaks in California, previously thought marginal30,31,
is being revisited32,33. To date, the meadow spittlebug has been
confirmed as the major vector in the olive quick decline syndrome,
PD and the almond leaf scorch disease outbreaks in Europe12,26,28,34;
therefore, its geographic distribution should be taken into account
when assessing the risk of Xf-related diseases35.

The tropical origin of Xf subsp. fastidiosa already suggests that
PD is a thermal-sensitive disease, with the temperature being a
range-limiting factor36,37. Thus, the accumulated heat units (i.e.,
growing-degree days) required to complete the process from XfPD
infection to symptom development is critical to predicting the
probability of developing PD acute infections38. Conversely, the
effect of cold-temperature exposures in the recovery of Xf-
infected grapevines is a well-established phenomenon38–40, lim-
iting the geographic range and damage of chronic PD in vine-
yards in the US9. Such “winter curing” has been linked to the
average Tmin of the coldest month, to exposures to extreme cold
temperatures for several days, or to the accumulation of chilling
hours41. The dynamics of chronic infections—i.e., those that
persist from one year to the next year—are determined by the net
balance between the number of new infections during the
growing season and those infected plants recovered in winter.

Because new infections late in the growing season are more likely
to recover during winter than early-season infections, the vector’s
phenology greatly influences the dynamics of chronic infections
and PD transmission30,42–44.

Several works have attempted to predict the potential geo-
graphic range of the subsp. fastidiosa45–47 and other Xf subspecies
in Europe48,49 and worldwide47 using bioclimatic correlative
species distribution models (SDMs). However, none of these
works has explicitly included information on vectors’ distribution
or disease dynamics. They hence provide little epidemiological
insight into the underlying environmental causes underpinning
or limiting a potential invasion. An alternative to overcome these
limitations is to develop mechanistic models based on the phy-
siology of the pathogen50, coupled with epidemiological models
that consider the disease dynamics while avoiding the difficulties
of including transmission parameters for each of the PD potential
vectors.

Risk maps often represent an average snapshot that overlooks
interannual climate variability and the effects of climate change as
limiting disease factors per se. This leads frequently to risk
overestimation51–54. Increased availability of computational
resources to deal with demanding climate databases now makes it
possible to fit dynamic epidemiological models that include cli-
mate variability at broad spatiotemporal scales. For example,
high-resolution satellite-based climate data have been employed
for testing mechanistic models that relate critical physiological
processes of coffee rust with climate variables in past outbreak
events55. Despite these important advances, no attempt of
exploring mechanistic SDM has been performed yet for PD.

In this work, we present a temperature-driven dynamic epi-
demiological model to infer where PD would have become
endemic in different wine-growing regions worldwide from 1981
onward if we forced the introduction of Xf-infected plants. We
follow an invasive criterion as defined by Jeger & Bragard56 to
include, as far as we can, key plant, pathogen, and vector para-
meters and their interactions for estimating the risk of estab-
lishment, persistence, and subsequent epidemic development. The
model assumes a local XfPD spatial propagation among plants
mediated by the presence of potential vectors. Due to the limited
knowledge about the vectors of PD in most wine-growing regions
of the world30, we employ a fixed maximal estimate for basic
reproductive numbers (R0) in the epidemiological models, except
for Europe, where there are precise estimations of climate suit-
ability for the main vector P. spumarius35. This heuristic
approach to obtaining PD risk maps yields results that are con-
sistent with all the relevant data available45. It also allows us to
quantitatively approximate the current potential growth rate of
PD incidence in wine-growing regions under different transmis-
sion scenarios, as well as extrapolate the impact of PD by 205057.
By estimating a lower global risk of PD, our study casts doubts on
the potential impact predicted for other Xf-related diseases
transmitted by P. spumarius49, specially in Europe when vector
distribution is taken into account.

Results
Thermal requirements to develop PD. We examined the
response of a wide spectrum of European grapevine varieties to
XfPD infection in three independent experiments conducted in
2018, 2019, and 2020. Overall, 86.1% (n = 764) of 886 inoculated
plants, comprising 36 varieties and 57 unique scion/rootstock
combinations, developed PD symptoms 16 weeks after inocula-
tion. European V. vinifera varieties exhibited significant differ-
ences in their susceptibility to XfPD (Supplementary Table S1). All
varieties, however, showed PD symptoms to some extent, con-
firming previous field observations of general susceptibility to
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XfPD9,12,37. We also found significant differences in virulence
(χ2= 68.73, df= 1, P= 2.2 × 10−16) between two XfPD strains
isolated from grapevines in Majorca across grapevine varieties
(Supplementary Fig. S1). Full details on the results of the
inoculation tests are available in “Methods”, Supplementary
Note 1, Supplementary Table S1 and Supplementary Data 1.

Growing degree days (GDD) have traditionally been used to
describe and predict phenological events of plants and insect
pests, but rarely in plant diseases58. We took advantage of data
collated in the inoculation trials together with temperature to
relate symptom development to the accumulated heat units at
weeks eight, 10, 12, 14, and 16 after inoculation (Supplementary
Data 1). Rather than counting GDDs linearly above a threshold
temperature, we consider Xf ’s specific growth rate in vitro within
its cardinal temperatures. The empirical growth rates come from
the seminal work by Feil & Purcell38 shown in the inset of Fig. 1a.
This Arrhenius plot was transformed, as explained in Supple-
mentary Note 2A, to obtain a a piece-wise function f(T) Eq. (1).
Our model and risk maps are based on f(T) (red line in Fig. 1a)
because it provides the best fit to the experimental data when
compared with the commonly used Beta function (blue line) for
representing the thermal response in biological processes59,60.
This Modified Growing Degree Day (MGDD) profile Eq. (1)
enables to measure the thermal integral from hourly average
temperatures, improving the prediction scale of the biological
process61. MGDD also provides an excellent metric to link XfPD
growth in culture with PD development as, once the pathogen is
injected into the healthy vine, symptoms progression mainly
depends upon the bacterial load (i.e., multiplication) and the

movement through the xylem vessel network, which are
fundamentally temperature-dependent processes38,62. Moreover,
MGDD can be mathematically related to the exponential or
logistic growth of the pathogen within the plant (Supplementary
Note 2B).

Interannual infection survival in grapevines plays a relevant
role when modelling PD epidemiology. In our model, we assumed
a threshold of five or more symptomatic leaves for these chronic
infections based on the relationship between the timing and
severity of the infection during the growing season and the
likelihood of winter recovery38,39,42. This five-leaf cut-off was
grounded on: (i) the bimodal distribution in the frequency of the
number of symptomatic leaves among the population of
inoculated grapevines (Supplementary Fig. S1), whereby vines
that generally show less than five symptomatic leaves at 12 weeks
after inoculation remain so in the following weeks, while those
that pass that threshold continue to produce symptomatic leaves,
and (ii) the observed correlation between the acropetal and
basipetal movement of Xf along the cane (Supplementary Fig. S1).
The likelihood of developing chronic infections as a function of
accumulated MGDD among the population of grapevine varieties
was modelled using survival analysis with data fitted to a logistic
distribution F ðMGDDÞ. A minimum window of MGDD= 528
was needed to develop chronic infections (var. Tempranillo),
about 975 for a median estimate, while a cumulative MGDD >
1159 indicate over 90% probability within a growing season (red
curve in Fig. 1c and “Methods”).

Next, we intended to model the probability of disease recovery
by exposure to cold temperatures. Previous works had specifically

Fig. 1 Climatic and transmission layers composing the epidemiological model. aMGDD profile fitted to the in vitro data of Xf growth rate in Feil & Purcell
200138. The original Arrhenius plot in Kelvin degrees (inset) was converted to Celsius, as explained in (Supplementary Note 2A), to obtain the fit shown in
the main plot red line; the blue line represents the fit with a Beta function. b Correlation between CDD and the average Tmin of the coldest month between
1981 and 2019. Plotted black dots (worldwide) and yellow dots (main wine-producing zones) depict climatic data from 6,487,200 cells at 0.1∘ × 0.1∘

resolution, spread globally and retrieved from ERA5-Land dataset. The red solid line depicts the fitted exponential function for worldwide data and the blue
solid line for main vineyard zones. c Nonlinear relationship between MGDD (red line) and CDD (blue line) and the likelihood of developing chronic
infections. Black dots depict the cumulative proportion of grapevine plants in the population of 36 inoculated varieties showing five or more symptomatic
leaves at each of the 15 MGDD levels (see Supplementary Information). Vertical bars are the 95% CI. d Combined ranges of MGDD and CDD on the
likelihood of developing chronic infection. e Transmission layer in the dynamic equation (1) of the SIR compartmental model. f Relationship between the
exponential growth of the number of infected plants with the risk index and their ranks.
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modelled cold curing on Pinot Noir and Cabernet Sauvignon
varieties in California as the effect of temperature and duration39

by assuming a progressive elimination of the bacterial load with
cold temperatures42. In the absence of appropriate empirical data
to formulate a general average pattern of winter curing among
grapevine varieties, we combined the approach of Lieth et al.39

and the empirical observations of Purcell on the distribution of
PD in the US related to the average minimum temperature of the
coldest month, Tmin, isolines41. To consider the accumulation of
cold units in an analogy of the MGDD, we searched for a general
correlation between Tmin and the cold degree days (CDDs) with
base temperature = 6 ∘C (see “Methods”). We found an
exponential relation, CDD � 230 expð�0:26 � TminÞ, where spe-
cifically, CDD≳ 306 correspond to Tmin<� 1:1 �C (Fig. 1b). To
transform this exponential relationship to a probabilistic function
analogous to F ðMGDDÞ, hereafter denoted GðCDDÞ, ranging
between 0 and 1, we considered the sigmoidal family of functions
f ðxÞ ¼ A

BþxC with A= 9 × 106, B=A and C= 3 (Fig. 1c), fulfilling
the limit GðCDD ¼ 0Þ ¼ 1, i.e., no winter curing when no cold
accumulated, and a conservative 75% of the infected plants
recovered at Tmin ¼ �1:1 �C instead of 100% to reflect
uncertainties on the effect of winter curing.

MGDD/CDD distribution maps. MGDD were used to compute
annual risk maps of developing PD during summer for the period
1981–2019 (see “Methods”). The resulting averaged map identifies
all known areas with a recent history of severe PD in the US
corresponding to F ðMGDDÞ> 90% (i.e., high-risk), such as the
Gulf Coast states (Texas, Alabama, Mississippi, Louisiana, Florida),
Georgia and Southern California sites (e.g., Temecula Valley)
(Fig. 2a), while captures areas with a steep gradation of disease
endemicity in the north coast of California (F ðMGDD> 50%Þ.
Overall, more than 95% of confirmed PD sites (n= 155) in the US
(Supplementary Data 2) fall in grid cells with F ðMGDDÞ> 50%.

The average MGDD-projected map for Europe during
1981–2019 spots a high risk for the coast, islands and major
river valleys of the Mediterranean Basin, southern Spain, the
Atlantic coast from Gibraltar to Oporto, and continental areas of
central and southeast Europe (Fig. 2b). Of these, however, only
some Mediterranean islands, such as Cyprus and Crete, show
F ðMGDDÞ> 99% comparable to areas with high disease
incidence in the Gulf Coast states of the US and California.
Almost all the Atlantic coast from Oporto (Portugal) to Denmark
are below suitable MGDD, with an important exception in the
Garonne river basin in France (Bordeaux Area) with low to
moderate MGDD (Fig. 2b).

Figure 2a shows how the area with high-risk MGDD values
extends further north of the current known PD distribution in the
southeastern US, suggesting that winter temperatures limit the
expansion of PD northwards9. A comparison between MGDD
and CDD maps (Fig. 2a vs. Fig. 2c, Fig. 2e) further supports the
idea that winter curing is restricting PD northward migration
from the southeastern US. However, consistent with growing
concern among Midwest states winegrowers on PD northward
migration led by climate change63, we found a mean increase of
0.12% y−1 in the areal extent with CDD < 306
(� Tmin<� 1:1 �C) since 1981, comprising land areas between
103°W and 70oW of the US (Supplementary Fig. S4). Such an
upward trend corresponds to 5090 km2 y−1 in the potential
northward expansion of PD due to climate change and an
accumulation of ~193420 km2 of new areas at risk since 1981.

High-CDD values would also be expected to restrict the
potential PD colonisation in continental Europe (Fig. 2d). Unlike
North America, the East-West distribution of major European
mountain ranges together with the warming effect of the Gulf

Stream decreases the likelihood of cold winter spells reaching the
western Mediterranean coast. GðCDDÞ between 100% and 95%
(i.e., recovery probability <5% – low winter curing) are mostly
prevalent below 40°N latitude in the southwest Iberian Peninsula
and Mediterranean islands and coastlands (<50 km away). Above
40°N latitudes, CDD < 100 are encountered mainly in the Atlantic
coast and Mediterranean coast and islands (Fig. 2d). In contrast,
central and southeast Europe show high CDD values likely
preventing XfPD winter survival on infected grapevines.

In Fig. 2e, f, we show the average climatic suitability for PD
establishment only from the mechanistic relation between XfPD
and temperature. Although all areas with current XfPD-related
outbreaks are identified, risk predictions based only on the
combination of MGDD and CDD could lead to overestimations,
as this approach overlooks disease transmission dynamics and
climate interannual variability.

PD global risk. We ran several simulations of the model Eq. (7)
with R0 values between 1 and 14 to validate PD spatiotemporal
distribution in the US. We found R0= 8 as the optimal parameter
for maximising the area under a ROC curve (Supplementary
Fig. S5), returning an accuracy of more than 80%, except for 2006,
due to data obtained from an area at the transient-risk zone
(Supplementary Fig. S7 and Table 1). For Europe and the rest of
the world, we derived a R0= 5, as a maximal baseline estimate for
modelling PD transmission (see “Methods” and Supplementary
Note 2D). These R0 values should be taken as operating estimates
for the model. From the model simulations Eq. (7), we obtained a
risk index r that measures the relative exponential growth rate in
the population of infected plants at the epidemic onset with
respect to the maximum growth, r= 1. This index served to rank
the epidemic-risk zones in high (>0.9), moderate (0.66–0.9), low
(0.33–0.66), and very low (~0.075–0.33) risks (see Fig. 1f,
“Methods”, and Supplementary Note 2E).

To date, PD is mainly restricted to the American continent
with some unrelated introductions of XfPD to Taiwan and
Majorca (Spain) from the United States12,13. To assess the risk of
PD establishment elsewhere, we projected our epidemiological
model into the main winegrowing regions of the Northern
Hemisphere (US, Europe, and China) and Southern Hemisphere
(Chile, Argentina, South Africa, Australia, and New Zealand)
(Fig. 3a–e). We found that emerging wine-producing areas in
China are predominantly located in non-risk zones, whereas only
some vineyards in the Henan and Yunnan provinces fall in
transition and moderate-high risk zones (Fig. 3b and Supple-
mentary Data 3). In Europe, 92.1% of the territory is in non-risk
zones and 6.1% is included in the epidemic-risk zone, with only
1.9% showing a high-risk index and 1.5% a moderate risk
(Supplementary Table S2). The model also reveals a progressive
transition from areas without risk (r(t) < 0) before 1990 to
epidemic-risk zones with low-risk indexes by 201957 (see Movies),
mainly affecting the basins of the rivers Po in Italy, Garonne, and
Rhone in France and Douro/Duero in Portugal and Spain. This
represents a mean increase of 0.21% y−1 in the epidemic-risk
zone, a rate 3.5-times greater than that of the eastern US, which
could increase the likelihood of PD establishment in Europe in
the coming decades. In the US, most states around the Gulf Coast
show high-risk indexes, whereas, around 37.5% of California’s
surface is suitable for epidemics with high growth rate incidence
(Supplementary Table S3).

In the Southern Hemisphere, vineyards at non-risk or transient
epidemic-risk zones predominate—e.g., non-risk in New Zealand
and Tasmania (Fig. 3c). Risk indexes in areas where PD can
become established (r(t) > 0) range from very low to low for most
coastal vineyards in Australia (west, south and east) with
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somehow more suitable conditions in the interior of New South
Wales, Greater Perth and Queensland (Fig. 3c); a general very-
low or low-risk indexes are predicted in the Western Cape in
South Africa (Fig. 3d); overall very-low but localised low to
moderate risk indexes in some areas in Chile; and low to
moderate growth of the number of infected vines in most of
Argentina, being this the wine-growing country with the highest
risk (Fig. 3a). Detailed information on areas with non-risk,
transient risk and risk indexes (i.e., disease-incidence growth
rates) in areas with the potential risk of establishment by country
and regions is provided in Supplementary Table S4 and
Supplementary Data 3.

Fig. 2 Average thermal-dependent maps for Pierce’s disease (PD) development and recovery in North America and Europe. PD development during the
growing season based on average F ðMGDDÞ estimations between 1981 and 2019 in North America (a) and Europe (b) derived from the results of the
inoculation experiments on 36 grapevine varieties. Large differences in the areal extension with favourable MGDDs can be observed between the US and
Europe. The winter curing effect is reflected in the distribution of the average GðCDDÞ for the 1981–2019 period in the United States (c) and Europe (d). A
snapshot of the temperature-driven probability of chronic infection averaged for the 1981–2019 period is obtained from the joint effect of MGDD and CDD
in North America (e) and Europe (f). Warmer colours indicate more favourable conditions for chronic PD and the dashed line highlights the threshold of
chronic infection probability being 0.5.

Table 1 Validation of model predictions.

Year Presence Absence TP TN Accuracy

2001 16 5 15 3 86%
2002 12 2 11 1 86%
2005 4 2 4 1 83%
2006 8 0 4 0 50%
2015 53 0 51 0 96%
TOTAL 93 9 85 5 88%

The items are locations where PD was present or absent. TP corresponds to true positives and
TN to true negatives according to our model with R0= 8.
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Risk indexes may vary within epidemic-risk zones if any of the
epidemiological parameters governing transmission change. As
expected, I(t) < I(0) boundaries increasingly displace to northern
latitudes in the US and Europe under higher transmission
scenarios, increasing the risk-epidemic zones significantly
(Fig. 4a–f). The line representing the outbreak extinction i.e.,
the non-risk zone r(t) <−0.09, in the validated R0= 8 scenario
for the US, falls at some distance above the isoline Tmin ¼
�1:1 �C in comparison to the R0= 5 scenario (Fig. 4c vs Fig. 4a
and ref. 57, Movies). This distribution pattern holds and moves
slightly northward over time in parallel to global warming,
although the trend of PD latitudinal change is moderated by
high-CDD values (i.e., cold accumulation). In addition, the
disease extension also declines due to CDD interannual
fluctuations in the simulations. Cold waves periodically occur
that reach latitudes close to the Gulf, such as those that occurred
in 1983, 1993, 1995, 2000, 2009, and 201357 (see Movies), thus
preventing PD expansion northward. The magnitude of this
decrease is revealed after comparing the average annual increase
of the areas between r(t) > 0 and CDD < 306 lines. From 1981 to
2019, the area with risk r(t) > 0 increased at a rate of 0.05% y−1,
while that of CDD < 306 by 0.12% y−1, an important difference
not explained alone by CDDs without considering climate
fluctuations (Supplementary Fig. S4).

We checked whether using a beta function produces changes in
the risk indexes with respect to the Arrhenius-based approach.
Firstly, we needed to calibrate the model using the probability of
developing chronic infections, as in Fig. 1c, with the values of
MGDD obtained with the beta function. We found little
differences, mainly a decrease in risk index in the transition
zones between risk and non-risk zones ((Supplementary Fig. S12)
and (Supplementary Fig. S13)), and non-significant differences in
risk zones at the global scale.

PD risk projections for 2050. Global shifts in the risk index rj(t)
between 2019 and those projected for 2050 were calculated under
the same baseline scenario (Fig. 5a–f, “Methods”). Our simulation
shows a generalised increasing trend mainly due to shifts from
transition zones to epidemic-risk zones with very low or low-risk

indexes in the main wine-growing regions, except for the US.
Here the epidemic-risk zone would increase by 12.8% with the
greater increments in the high-risk index category (22.7%) and a
decrease in the transition zones (Supplementary Table S5). Much
less surface would be included in the epidemic-risk zone in
Europe (8.6%) compared to the US (36.5%). However, the
epidemic-risk zone would expand by 40.0% with respect to 2020,
a rate more than three times higher than that of the US (Sup-
plementary Table S6). Such increases are due to the emergence of
previously unaffected areas in 2020 evolving into epidemic-risk
zones by 2050, and epidemic growth-rate increases in already
epidemic-risk zones in 12 of 42 countries (Supplementary
Table S2). Among these 12 countries, however, there is sub-
stantial variation in the risk index increments within epidemic-
risk zones with respect to 2019 (Supplementary Table S6). While
non-risk zones still cover 87.6% of Europe’s land area, epidemic-
risk zones with high-risk indexes are expected to be almost two-
fold higher than that of 2019, comprising 3.2% of Europe
(Table 2).

Risk based on vector information. So far, we have ignored the
distribution of known and potential vector species due to their
large number in the Americas and the limited quantitative
information generally available. In the case of Europe, given P.
spumarius prevalence as a potential vector and its wide dis-
tribution, we added a vector layer in a spatially dependent
R0ðjÞ ¼ Rmax

0 vðjÞ, where v(j) is the climatic suitability for the
vector (“Methods”), v= 1 implies optimal climatic conditions
with no constraints for the vector population size, while v= 0
implies unsuitable climatic conditions and its absence (Supple-
mentary Fig. S8). According to the model, no European zone
shows a high-risk index and barely 0.34% of the territory falls in
areas with potential moderate exponential growth rates in disease
incidence (Supplementary Table S7). Irrespective of vineyard
distribution, we estimated that PD could potentially become
established (i.e., r(t) > 0) at a maximum of 3.1% of the territory,
while the area at moderate-risk index would be 5-times lesser
than the model without the vector’s climate suitability layer, this
latter more in consonance with other proposed risk maps45,46.

Fig. 3 Climate-driven risk maps for PD establishment in main viticulture regions worldwide under a baseline R0= 5 scenario. White dots indicate the
main vineyard areas in the wine-growing regions of China and the Southern Hemisphere. a Chile and Argentina; b Asia with special attention to China;
c Australia and New Zealand (wine areas are not marked as the whole country is without risk); and d South Africa. e Global distribution of main wine-
producing areas analysed. The risk index rj(t), express the relative exponential growth rate of the disease incidence, and was scaled from 0.1 to 1 and ranked
as very low (0.10–0.33), low (0.33–0.66), moderate (0.66–0.90) and high (>0.90).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04358-w

6 COMMUNICATIONS BIOLOGY |          (2022) 5:1389 | https://doi.org/10.1038/s42003-022-04358-w |www.nature.com/commsbio

www.nature.com/commsbio


Such differences in the projected risks are mainly concentrated in
the warmest and driest Mediterranean regions and are due to
uncertainties concerning temperature-humidity interactions in
the ecology of the vector35.

Combining vineyard land cover across Europe with the model
output. When we integrate into the model a layer of vineyard
surface from Corine-Land-Cover, we find that PD could poten-
tially become established (i.e., r(t) > 0.075) in 22.3% of the vine-
yards in Europe. However, no vineyard is in epidemic-risk zones
with a high-risk index and only 2.9% of the vineyard surface is at
moderate risk (Supplementary Table S8). The areas with the
highest risk index (r(t) between 0.70 and 0.88) are mainly located
in the Mediterranean islands of Crete, Cyprus and the Balearic
Islands or at pronounced peninsulas like Apulia (Italy) and
Peloponnese (Greece) in the continent (Fig. 6a and Supplemen-
tary Table S8). Most vineyards are in non-risk zones (42.1%),
whereas 35.6% are located in transition zones with presently non-
risk but where XfPD could become established in the next decades

causing some sporadic outbreaks. In Supplementary Data 4 and
Supplementary Table S8, we provide full details of the total
vineyard areas currently at risk for each country and region.

Our model with climate and vector distribution projections for
2050 indicates a 55.8% increase in the epidemic-risk zone in Europe
(Fig. 6b). This increment would be mainly due to the extension of
epidemic-risk zones with very low and low-risk indexes. However,
within the epidemic-risk zones, areas with moderate risk indexes
would decrease from 114925 ha in 2020 to 43114 ha in 2050, and
no vineyards would be at high risk (Fig. 6b; see Supplementary
Table S9 and Supplementary Data 4). Counterintuitively, our model
indicates a substantial increase in the area where PD could establish
and become endemic for 2050, but a moderate decline in those
areas where crop damage could be expected to be significant (e.g.,
Balearic Islands, Crete, Cyprus, Apulia).

Discussion
We introduce an epidemiological approach to assess the risk of
PD establishment and epidemics in vineyards worldwide. The

Fig. 4 Temperature-driven dynamic-model simulations for PD establishment from 1981 to 2019 under different R0 scenarios with a spatially
homogeneous vector distribution. For comparison, the baseline scenario with a R0= 5 for Europe is projected to North America (a) capturing to some
extent the distribution and severity of PD in that continent. In Europe (b) high-risk areas (i.e., rj(t) > 0.90) are restricted to the coastal Mediterranean and
the south of the Iberian Peninsula; black dash line separate areas with r(t) > 0 where theoretically PD can thrive. Under higher R0 scenarios, R0= 8 for
North America (c) and Europe (d), the dash lines tend to separate from isoline Tmin ¼ �1:1 �C (white line); and even more in extreme transmission
pressure R0= 16 for North America (e) and Europe (f).
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model includes the dynamics of the infected-host population,
which enables estimating the initial exponential growth/decrease
rate of the disease incidence. Unlike SDM correlative studies,
Bayesian or, in general, machine learning black-box approaches,
our model goes beyond by providing a mechanistic framework
and thus explanatory power. In addition, it is flexible enough to
simulate different climate and transmission scenarios, allowing,
for instance, the incorporation of information on the spatial
distribution of the vector. Comprehensive global PD risk maps
result from the model simulations with historical climatic data. A
web page is included, showing simulations with different para-
meters to estimate the risk of PD anywhere57.

Temperature regulates key physiological processes of the
ectothermic organisms involved in PD and thus limits the ther-
mal range in which they can thrive52. XfPD multiplication and
survival within vine xylem vessels not only characterise PD, but
also determine the bacterial population dynamics38,62. PD
symptom development can be therefore characterised as a
thermal-dependent continuous process within the range of XfPD’s
cardinal temperatures53. The combination of MGDD metrics
with robust experimental data provides a reliable predictor of
climatic suitability and the probability of developing PD during
the summer, whereas CDD accounts for the effect of cold-

temperature exposure on infected-plant recovery. This opposite
contribution of MGDD and CDD in the demography of infected
plants shapes the impact of climate variability on the epidemic
dynamics in the early stages of the invasion (Fig. 1d). Given that
the physiological basis of the plant-Xf interaction leading to
symptoms development is poorly understood, we caution that
other environmental factors, such as drought, nutrient status or
crop management may modulate symptom expression and hence
add an error in the MGDD parameter not measured in this work.
Nonetheless, we deem the error range would be smaller than the
differences in the accumulated MGDDs needed to reach the same
disease level among varieties (i.e., regional differences) and
smaller than the interannual MGDD oscillations found in most
locations. In addition, our model is general enough to allow for
other functions or adjustments of the relationship between XfPD’s
growth rate and temperature in vitro as better experimental data
become available. However, we deem that the differences in the
risk indices would vary very little in risk zones, as we observe in
PD risk maps for Europe when a Beta function is applied instead
of the Arrhenius-based approach to adjust the MGDD (Supple-
mentary Figs. S12 and S13).

Knowledge of insect distribution is crucial for predicting epi-
demic outbreaks of endemic diseases, as well as the risk of

Fig. 5 Global shifts in PD risk index (rj(t)) from 2020 to 2050. To build the maps, we have assumed a spatial homogeneous vector distribution and a
R0= 5 scenario, except for the US where a R0= 8 has been used in the model simulations. a North America; b Europe; c Asia; d South America; e Australia
and New Zealand; and f South Africa. Risk-index increases are in red and decreases in blue. The dashed line represents the spatial threshold where rj(t)
difference changes from negative to positive.

Table 2 Shifts in risk areas for Pierce’s disease in Europe projected for 2050 under a R0 = 5 scenario.

Risk 2050 2020 Difference Difference 2050 2020

km2 km2 km2 (%) (%) Area (%) Area

No risk 8885300.5 9334178.7 −448878.2 −4.8 87.6 92.1
Transition 381081.3 182872.6 198208.7 108.3 3.8 1.8
Very low 189025.3 179225.7 9799.6 5.5 1.9 1.8
Low 207599.4 104143.1 103456.3 99.3 2.1 1.0
Moderate 154780.5 148621.4 6159.0 4.1 1.5 1.5
High 322225.9 190971.4 131254.5 68.7 3.2 1.9

The model was run assuming the same homogeneous spatial distribution of the vector for the whole period.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04358-w

8 COMMUNICATIONS BIOLOGY |          (2022) 5:1389 | https://doi.org/10.1038/s42003-022-04358-w |www.nature.com/commsbio

www.nature.com/commsbio


invasion by emerging vector-borne pathogens49,56,64. Given the
great diversity of known and potential vectors that can transmit
PD30, it has not been possible to include each region’s particular
vectors in the model. Therefore, when evaluating the risk of PD
on a global scale, we have considered a homogeneous spatial
distribution of the vector (fixed R0), except in Europe where there
is information on the main vector (Supplementary Fig. S8). As
expected, the European case shows how models that assume a
homogeneous spatial distribution of the vector generally produce
epidemic risk zones with higher risk indexes than models that
include a heterogeneous spatial distribution (Supplementary
Table S2 vs. Supplementary Table S7). This lack of information
about vectors is one of the main reasons why the risk of vector-
borne plant diseases is often overestimated.

Risk overestimations may involuntarily stem from other
additional sources too. Using mean data as inputs in epidemio-
logical models can lead to biased results when response functions
are nonlinear and climate variability is not accounted for53. This
study presents experimental evidence of a non-linear relationship
between MGDDs and PD chronic infections and indirect
empirical evidence of a non-linear relationship between CDDs
and PD recovery (Supplementary Fig. S9). Such a non-linear
response consequently greatly impacts reducing the risk of PD
establishment and steeping the spatial gradients in risk maps
(Figs. 4 and 6). Moreover, MGDDs and CDDs might help to
explain why disease pressure is much higher in the southeastern
US than in California and Europe (Figs. 2 and 4) or, for example,
earlier reports of PD outbreaks in Kosovo65. Cooler summer
nights in California and a shorter growing season compared to
those found in the Gulf states in the southeastern US explain the
difference in the accumulated MGDD for both areas. In the case
of Kosovo, CDD values above certain thresholds could have led to
the extinction of incipient outbreaks driven by several years with
MGDD in the conducive range of PD (Fig. 2).

Our PD risk map for Europe confirms previous predictions for
the subsp. fastidiosa from SDMs45. Both approaches make con-
gruent predictions on PD potential distribution, providing con-
vergent lines of independent evidence of climate suitability.
However, our risk maps go further by incorporating in the
epidemic-risk zones information on the relative exponential
growth rates in the potential disease incidence. In general terms,
the epidemic-risk map including vector information indicates a
low risk for chronic PD. Only ~ 0.34% of European vineyard
surface, mainly located in Cyprus, Crete, Sardinia, part of Sicily
and the Balearic Islands, meet climatic conditions for PD to
become endemic and cause significant damage (Supplementary

Table S7 and Supplementary Data 4). Other regions such as
Bordeaux, Portugal, Rhône Valley, and the Veneto region, would
be included in epidemic-risk zones but with very low to low
exponential growth rates in disease incidence. By contrast,
notorious wine-growing regions in Spain (e.g., Rioja, Ribera del
Duero), France (e.g., Burgundy) and Italy (e.g., Piedmont) cur-
rently fall within areas considered as non-risk zones, transient-
epidemic zones or epidemic-risk zones with very-low risk indexes
(Fig. 6).

The dynamic nature of the simulation outputs already points to
a progressive global increase in the areal extension of PD
epidemic-risk zones (r(t) > 0) in the last decade, irrespective of
vineyard distribution (see movies on ref. 57). This is even more
accentuated in the model projections for 2050, which point out a
global expansion of PD epidemic-risk zones at different velocities
among continents due to climate change (Fig. 5). For example,
many important viticulture areas in western Europe included in
non-risk or transition zones before 1990 are progressively shifting
to hotter summers and milder winters and hence would be
increasingly suitable for the disease within the extrapolated cur-
rent scenario. This is further illustrated by a 40% increase of the
potential epidemic-risk zone by 2050 concerning 2020 for Europe
and more moderate increases in the United States and the
Southern Hemisphere (Fig. 5). Nonetheless, our model projection
for 2050 that includes spatial heterogeneity in the vector dis-
tribution, as in Europe, would indicate lower transmissibility
because global change is predicted to have negative effects on P.
spumarius abundance in Europe35,66. At the global scale, there is
certainly scientific consensus that climate change will follow a
general pattern summarised in the paradigm “dry gets drier, wet
gets wetter”67. In agreement, our model projection for PD on the
vineyards of Majorca (Spain) suggests shifts to slightly less
favourable conditions for XfPD transmission and an expected
progressive decrease in the impact of the disease by 2050. This
example and others in Mediterranean islands (see Supplementary
Data 4) advocate for certain caution when interpreting climate
change projections, especially in other Mediterranean climates of
the world, where the complex interactions between humidity and
temperature can limit the presence and abundance of vectors
(Supplementary Fig. S8).

The scope of our study excludes location-specific complexities
surrounding PD ecology due to scale limitations. The spatial
distribution of the vector is considered only for the V. vinifera-
XfPD-P. spumarius pathosystem in Europe, so R0 estimations
could locally differ in other wine-producing regions elsewhere
(Fig. 3). Disease incidence thus could locally vary where the

Fig. 6 Intersection between Corine-land-cover vineyard distribution map and PD-risk maps for 2020 and 2050. Data were obtained from Corine-land-
cover (2018) and the layer of climatic suitability forP. spumarius in Europe from35. The surface of the vineyard contour has been enlarged to improve the
visualisation of the risk zones and disease-incidence growth-rate ranks. a PD risk map for 2019 and its projection for 2050 (b). Blue colours represent non-
risk zones and transient risk zones for chronic PD (R0 < 1). The 2050 map shows some contraction of epidemic-risk zones with moderate risk indexes in
Mediterranean islands and Apulia (Italy) as the climate becomes hotter and dryer.
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climate is conducive to PD. Such variation is because transmis-
sion rates tend to increase exponentially rather than linearly
under environmental conditions favouring vector abundance43,
as has been observed at a local scale on vineyards of Majorca12.
Our study also does not contemplate likely changes within the
PD pathosystem. To date, PD is caused by XfPD (i.e., ST1/ST2),
but other genotypes of the subsp. fastidiosa or other subspecies
and their recombinations could arise in the future with different
ecological and virulence traits19. On the other hand, new vector
species could be accidentally brought in30, as exemplified with
the introduction of the glassy-winged sharpshooter (Homalo-
disca vitripennis) in California, modifying transmission rates and
disease incidence in new areas44. To capture these uncertainties
in relation to the vector, we have performed simulations with
R0= 8 and R0= 16 (Fig. 4). Remarkably, a comparison of PD
risk maps for Europe with different R0 suggests for non-
Mediterranean areas the need to stress more surveillance on the
introduction of alien vectors rather than in the pathogen itself.
This is because, under the current scenario (R0 = 5) with P.
spumarius as the main vector, most of the non-Mediterranean
vineyards would not support the establishment of PD, but the
introduction of new insect vectors with greater transmission
efficiency (R0= 8) could compensate for the climatic layer and
increase the risk index above 0. In addition, differences in
grapevine varietal response alongside virulence variation among
Xf strains may slightly modify PD thermal tolerance limits and
therefore locally modulate epidemic intensity (see details
in Supplementary Information). Such an effect could be seen
with cv. Tempranillo, a widely planted variety in northern Spain
(Supplementary Table S1); the rate of symptom progress and
systemic movement is higher than the average varietal response
to XfPD (i.e., lower MGDD), which in addition might imply
higher survival rates. This point calls for further testing in
the field.

Our model partially explains why PD has not become estab-
lished in continental Europe and other main wine-growing
regions worldwide during the last 150 years, in contrast to other
exotic diseases and pests brought in with native vines from the
US5–8. We suggest that the underlying causes of this low-
invasiveness risk in Europe are fundamentally two: (i) low cli-
matic suitability for chronic PD and (ii) a climatic mismatch
between environment conditions suitable for both the vector and
the pathogen and their interplay in disease dynamics, similar to
the situation recently described for the V. vinifera-XfPD-P. spu-
marius pathosystem in northern California33. Currently, suitable
conditions for the pathogen’s invasion mostly concur in Medi-
terranean islands and coastlands (Supplementary Data 4). Like-
wise, similar results would be expected in other Mediterranean
climates of the main winegrowing regions of the Southern
Hemisphere if a vector spatial distribution layer is incorporated in
the model simulations (see ref. 57). Finally, although increasing
global warming will extend epidemic-risk zones in all continents,
some caution is recommended to not incur risk overestimation,
as we show in the PD risk projections for 2050 in Europe when
taking into account the vector spatial distribution; complex
interactions between temperature and humidity in the ecology of
the vectors may have a great effect in their distribution, abun-
dance and thus transmission capacity35. There is an urgent need
to fill the knowledge gap on the ecophysiology for each potential
vector to downscale PD model predictions to local and regional
situations.

Methods
Inoculation tests. XfPD-inoculation tests were conducted in 2018, 2019, and 2020.
A sample of 36 local, regional and international wine-grape varieties was selected,
which included nine of the 10 most cultivated wine-grape varieties representing

more than 80% of the worldwide vineyard surface (https://www.oiv.int). Plants
were randomly distributed in 12-plant rows along an insect-proof net tunnel and
exposed to environmental temperature. In total, 57 rootstock-scion combinations
were pin-prick mechanically inoculated25 with two strains of Xf. subsp. fastidiosa
(ST1) isolated from grapevines in Majorca. Disease severity was rated by counting
the number of symptomatic leaves eight weeks after inoculation in mid-May and
then every two weeks until the 16th week12. Full details on the inoculation con-
ditions, isolates, disease score, and statistical analysis are provided in Supplemen-
tary Information, Supplementary Table S8, and Supplementary Data 1.

Modified Growing Degree Days. We generalised McMaster & Wilhelm’s58 for-
mulation of growing-degree days to account for the growth rate of XfPD as a function
of temperature under optimal culture conditions based on the well-known Arrhe-
nius law valid in the relevant temperature range for Xf (Supplementary Note 2A).
Specific growth rate (k) values at different temperatures were extracted from the
publication of Feil & Purcell38 to build the mathematical function f(T) describing the
Xf ’s instantaneous growth rate dependence on temperature according to

f ðTÞ ¼

0 if T <Tbase

m1 � T � b1 if Tbase ≤ T <T1

m2 � T þ b2 if T1 ≤ T <Topt

m3 þ b3 if Topt ≤ T <T2

m4 þ b4 if T2 ≤ Tmax

0 if T ≥ Tmax

8>>>>>>>><
>>>>>>>>:

where Tbase= 12∘C, T1= 18, Topt= 28∘C, T2= 32 and Tmax ¼ 35 �C; the slopes are
m1= 0.66, m2= 1, m3=−1.25 and m4=−3 and the intercepts are b1=−8,
b2=−14, b3= 4 and b4= 105.

MGDD is then defined as:

MGDDðtÞ ¼ 1
24

∑
τ2t

f ðTðτÞÞ; ð1Þ

where τ is expressed in hours, t in years and we divide by 24 to obtain MGDD(t) in
degree days. To compare whether using other functions for Xf ’s growth rates
in vitro could yield differences in the risk indexes, we also fitted data to a smooth
Beta function commonly used to represent the thermal response in biological
processes59,60.

Disease progress with temperature. Hourly mean temperature data were
recorded between April 1 and October 31 in 2018, 2019, and 2020 with an auto-
mated weather station (Quimisur, IQ2000). The temperature sensor was at a two-
metre height from the bare ground and around five metres from the entrance of the
insect-proof net tunnel. To characterise the progress of PD symptoms, we c
onverted into MGDD units the cumulative hourly mean temperatures measured
from the time of inoculation to the day of disease evaluation using Eq. (1). In total,
15 MGDD levels were estimated corresponding to weeks 8, 10, 12, 14, and 16 after
inoculation in the years 2018, 2019, and 2020, respectively. Data on the number of
symptomatic leaves (severity) for each plant and MGDD levels were pooled in a
single database to seek a generalised average thermal response pattern among the
population of V. vinifera varieties (see Supplementary Data 1). To model the
probability of chronic infections (i.e., persistent year-to-year infections), we used a
survival analysis, where the event of interest depends on the cumulative MGDD
rather than time. First, we defined a chronic infection cut-off point to transform
the number of symptomatic leaves into binary data. Previous research had evi-
denced that early grapevine infections, in addition to producing more extensive
and severe PD symptoms, are more likely to survive the following year than late
infections38,39,42. Furthermore, susceptible cultivars generally show lower recovery
percentages compared to the less susceptible ones in the field68,69. Similarly, we
observed in our inoculation assays that the majority of infections that reach around
five or more symptomatic leaves 12 weeks after inoculation continue to develop
more symptomatic leaves the following weeks, while for plants that do not exceed
that threshold, symptoms tend to remain stagnant. These results indicate a low
probability of survival for infections showing few symptomatic leaves during the
growing season and thus support our heuristic approach of assigning five or more
symptomatic leaves as a threshold for chronic infection (see Supplementary
Information and Supplementary Fig. S1 for assumptions of chronic infection).
Using the “survival" package in R70, we analysed the cumulative probability of
developing chronic infections as a function of MGDD. F(MGDD) was adjusted to
the experimental data by the nonlinear least squares method. The 10th, 33rd, 50th,
66th, and 90th percentiles were used to scale the risk of the total MGDD in the
logistic function, F ðMGDDÞ (Fig. 1c).

Disease recovery through winter curing. We modelled winter curing considering
the effect of temperature duration below a threshold temperature, where we assume
that the bacterial killing process increases in efficiency with decreasing
temperatures39. To adjust a probabilistic model to the accumulation of cold units,
we took as reference the distribution and severity of PD in the US proposed by
Purcell based on the isolines of the mean Tmin of the coldest month (available in
ref. 41) where PD is rare (Tmin between −1.1 °C and 1.7 °C), occasional (1.7–4.5 °C)
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and severe (>4.5 °C). Noteworthy, the projection of these isolines in Europe has
predicted with some precision the distribution of the establishment of Xf in the
continent45. To capture the accumulation nature of the chilling process at different
climatic zones, we determined the global average correlation between Tmin and the
average accumulated CDD between November 1 and March 31 in the northern
hemisphere and between April 1 and October 31 in the southern hemisphere using
6,487,200 points distributed throughout the planet. The CDD was estimated as

CDDðtÞ ¼ 1
24

∑
τ2t

ð6� TðτÞÞ forTi ≤ 6
�C; ð2Þ

where the threshold 6 °C comes from ref. 39.

Global climate data, MGDD/CDD computation. Global mean hourly tempera-
ture data were downloaded from the ERA5-Land dataset71 at 0. 1° spatial resolution
using GRIB format. The annual average Tmin of the coldest month was calculated
from the hourly average temperature from the ERA5-Land dataset. To calculate the
annual MGDD and CDD a simple Julia72 library was built on top of GRIB.jl
package73. For the Northern Hemisphere, the accumulated MGDDs were com-
puted from April 1 to October 31, whereas (CDDs) were estimated from November
1 to March 31, and the reverse for the Southern Hemisphere.

Disease model. We used a standard susceptible-infectious/infected-recovered
(SIR) compartmental model to assess the risk of PD establishment and epidemics
worldwide, represented by the following three equations in the large population
limit:

_S ¼ �β S I=N;

_I ¼ βS I=N � γ I;

_R ¼ γ I;

ð3Þ

where S is the susceptible host population, I is the infected population, R is the dead
population, and S+ I+ R=N is the total number of vines in the population. The
reduction of a vector-borne disease model to a SIR model gives rise to a linear
dependence of the basic reproductive number R0 on the vector population (see
Supplementary Notes 2F and 4). Vector-plant transmission of the pathogen is
approximated with an effective plant-to-plant transmission rate β (Supplementary
Note 4), as has been done previously for other Xf-related diseases74, and the
transition from the infected compartment to the recovered (dead) compartment is
given by the recovery (mortality) rate γ. In a mean-field approximation of the onset
of an outbreak, the basic reproductive number (R0= β/γ) defines the exponential
growth/decrease stage in the SIR model (Fig. 1e and Supplementary Note 2C).
Although the time from infection to vine death depends on the environmental
conditions and the grape wine variety, we assigned a mortality rate of γ = 0.2 y−1

based on the estimated median survival time of infected vines in California25. The
maximum growth rate of the epidemic, relevant for an estimation of the risk of
establishment, occurs when S(t= 0) ~N, and was approximated by the (linearised)
differential equation,

dI=dt � β I � γ I ¼ γ I ðβ=γ� 1Þ ¼ γ I ðR0 � 1Þ ; ð4Þ
where we have assumed the initial conditions: S(t= 0) ≈N, I(t= 0)= I(0) ≈ 0 and
R(t= 0)= 0. This linear differential equation can be integrated exactly:

IðtÞ ¼ Ið0Þ expðγ ðR0 � 1Þ tÞ : ð5Þ
To account for the effect of temperature in the epidemic process, we modify the

previous expression as follows

IðtÞ ¼ Ið0Þ expðγ ðR0 � 1Þ tÞF MGDDðtÞð ÞG CDDðtÞðð Þ
¼ Ið0Þ expðγðR0 � 1ÞtÞΠðtÞ; ð6Þ

where ΠðtÞ ¼ F ðMGDDðtÞÞGðCDDðtÞÞ is the cumulative probability of chronic
infection dependence on temperature and R0 bears the information on the vector
density.

The spatial unit of the model is given by the resolution of the ERA5-Land data,
for which we assume uniform conditions within each of the grid cells
(approximately 9 × 9 km2) in terms of vector population, susceptible vines and
parameters that define the model. Risk outcome is calculated for each cell of the
spatial raster individually; i.e., there is no simulated spread from one cell to
another. Altogether, the equation representing the number of individuals with
chronic infections in each cell j at time t is written as

IjðtÞ ¼ Ijðt � 1Þ eγ ðR0 ðjÞ�1Þ
transmission layer|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ΠjðtÞ

zffl}|ffl{climatic layer

; ð7Þ

where I(t− 1) is the number of chronic infections in the previous year (t− 1) and
ΠjðtÞ ¼ F ðMGDDÞGðCDDÞ is the climatic layer that modulates the growth term
and describes the cumulative probability of new infections becoming chronic in the
time period between t− 1 and t. The model assumes a homogeneous distribution
of the vector population among the grid cells (same β and then same R0(j)= R0)
except for Europe, where information on the spatial distribution of P. spumarius is
available (see “Methods”). In this latter case, a spatial dependent R0(j) is

incorporated into the model by considering the product of the homogeneous R0

and the spatially-dependent climate suitability for vectors (Supplementary
Note 2F).

To compute the epidemic-risk maps, we carried out a simple simulation
summarised in three steps: (i) at the initial condition for the first year considered,
t0, each grid cell is seeded with a single infected plant, I(t0)= 1; (ii) the simulation
runs for a year and the incidence is calculated following Eq. (7); (iii) we seed again
the cells for which the number of infected plants has vanished. In the last seven
years of the simulation, there is no reseeding to allow the system to relax. This
process is repeated until the final year T . Finally, the risk index rjðT Þ is calculated
from the final number of infected plants at grid cell j as

rj ¼ max
logðIjðT Þ=Ijðt0ÞÞ
γ ðR0ðjÞ � 1Þ T ;�1

� �
: ð8Þ

In this equation, rj implicitly delimits three differential risk zones in the maps: (1)
non-risk zones where rj ≤− 0.09, and the number of infected plants decreases
exponentially; (2) transition areas where −0.09 < rj ≤ 0.075, and (3) an epidemic
risk-zone where rj > 0.075 and PD can theoretically become established and
produce an outbreak—the number of infected plants increases exponentially (see
Supplementary Note 2E for further details).

Model performance was calibrated with observed records of PD presence in
California and the southeast of the US, where the disease is well established. PD
distribution data were collected from publications from 2001 to 2020. Publications
were filtered by selecting only records where the pathogen detection on
symptomatic grapevines was confirmed by PCR or Elisa. The exact coordinates of
the records were taken when available in the publication or approximated to
locality or county level to build the Supplementary Data 119,39,41,75–79. For
modelling purposes and to attempt a general rough estimate of the R0 parameter
valid for the entire US, we assumed a single vector with a uniform spatial
distribution. We ran several model simulations with R0 ranging from 1 to 14.
Model prediction performance was estimated using a ROC curve by plotting the
true-positive rate (TPR), calculated as the ratio (TP/TP+FN), against the false-
positive rate (FPR), calculated as the ratio (FP/TN+FP), where PD absence/
presence fulfil the following conditions: true positive (TP), PD is positive and r > 0;
true negative (TN), PD is negative and r < 0; false positive (FP), PD absent but r > 0;
and false negative (FN), PD positive and r < 080. A different approach was followed
to estimate R0 for Europe given that PD is only present in Majorca and hence
spatiotemporal data on the PD distribution is limited to the island. First, we
estimated the transmission rate of the main European vector P. spumarius from the
well-studied disease progress curve of the almond leaf scorch epidemic in Majorca.
Then, using the known mortality rate of PD-infected vines γ ~ 0.2 y−1 and the
inferred transmission rate, β= 0.8 y−1, the basic reproduction number for PD in
Majorca yields R0= β/γ ≈ 4. Finally, using data on the climate suitability of the
vector in Majorca, v= 0.8, and inverting the relation R0(j)= R0 v(j), we estimated
R0 ≈ 4/0.8= 5 as a maximal estimate baseline scenario for PD transmission in
Europe (Supplementary Note 2D). This figure is not intended to be an exact
estimate of R0 but rather an average reference in our model in agreement with the
lesser abundance of vectors relative to the US. Furthermore, since there is no
information on the distribution of the potential vectors and no PD distribution
data to calibrate, we also used a conservative R0 ≈ 5 scenario for the rest of
the world.

Distribution of wine-grape production areas. Risk maps were focused solely on
wine-grape regions excluding table and dried grapes-producing areas. Data on the
vineyard surface in Europe were obtained from the CORINE land-cover map81–83

(Fig. 6). The Nomenclature of Territorial Units for Statistics (NUTS) was used as a
geocoding for the subdivisions of European countries for statistical purposes. To
visualise the locations of the main growing regions in the risk maps, we included
dots representing the distribution of the main wine-growing regions collected from
official statistics and maps from the countries (Fig. 5).

Philaenus spumarius SDM. The potential distribution of P. spumarius in Europe
under current and future (i.e., 2050) climatic conditions was provided by Godefroid
et al.35. Predictions were obtained using a generalised additive model and two
bioclimatic descriptors i.e., a climatic moisture index for the coldest 8-month
period of the year and the average maximum temperature in spring (March, April
and May). Both descriptors reflect physiological constraints acting on life stages of
the meadow spittlebug, particularly sensitive to spring temperature and humidity
(eggs and nymphs), and were identified as good predictors of P. spumarius
distribution35. We used the positive relationship between the climate suitability and
spittlebug adult abundance35 to assume no climatic constraints on vector popu-
lation sizes at optimal climatic conditions (v= 1). Climatic suitability indexes, v(x),
were used to compute a spatially-dependent basic reproduction number, R0(x)=
R0 v(x). The linear dependence between the basic reproduction number and cli-
matic suitability is justified by a vector-borne epidemic compartmental model
(Supplementary Notes 2F and 4).

Risk assessment by 2050. Climatic variables were obtained with annual reso-
lution by extrapolating the computed MGDD(t) and CDD(t) time series up to
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2050. The observed trends of the time series were captured using a machine
learning-based linear regression model while the interannual fluctuations were
modelled by Gaussian noise (Supplementary Note 3). Future risk extrapolations
were obtained as the average of 104 simulations of this process. A correlative SDM
was used to estimate vector spatial distribution in Europe using the global circu-
lation model MIROC5 and greenhouse gas emission scenario RCP4.5, assuming
moderate climate change35. Afterwards, the risk was computed following the same
simulation procedure previously explained.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The world hourly temperature data from 1981 to 2019 necessary to prepare Figs. 1 to 6
were taken from Copernicus ERA5-Land (namely the ’2m temperature’ field). The
geographical vineyard distribution used in Fig. 6 was taken from Copernicus Corine
Land Cover database. Further source data for Fig. 1 is available in Supplementary Data 1.
Points on the distribution of main vineyard zones given in Fig. 3 are available in
Supplementary Data 3. Figure 6 is based on data in Supplementary Data 4. The source
data of Table 1 is available in Supplementary Data 2.

Code availability
We provide a library built in Julia to analyse the data outputs of ERA5-Land in GRIB
format in this Github link. Furthermore, the simulation code and a small reproducible
example are provided in this Github link.
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