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The recently proposed Langevin equation, aimed to capture the relevant critical features of stochastic
sandpiles and other self-organizing systems, is studied numerically. The equation is similar to the Reggeon
field theory, describing generic systems with absorbing states, but it is coupled linearly to a second conserved
and static(nondiffusive) field. It has been claimed to represent a different universality class, including different
discrete models: the Manna as well as other sandpiles, reaction-diffusion systems, etc. In order to integrate the
equation, and surpass the difficulties associated with its singular noise, we follow a numerical technique
introduced by Dickman. Our results coincide remarkably well with those of discrete models claimed to belong
to this universality class, in one, two, and three dimensions. This provides a strong backing for the Langevin
theory of stochastic sandpiles, and to the very existence of this meagerly understood universality class.
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Aimed at shedding some light at the origin oforder in
Nature, some different routes to organization have been pro-
posed in the past 15 years or so. In particular, the concept of
self-organization, as exemplified bysandpiles[1–3] (for re-
views see Refs.[4–6]), one of the canonical instances of
self-organizing systems, has generated a rather remarkable
outburst of interest. In order to rationalize sandpiles in par-
ticular, andself-organized criticality(SOC) in general, and to
understand their critical properties, it has been recently pro-
posed to look at them as systems with many absorbing states
[6–10]. The underlying idea is that in the absence of external
driving sandpile models get eventually trapped into stable
configurations from which they cannot escape, i.e., absorbing
states(AS) [11,12]. In order to make this connection more
explicit the notion offixed-energy sandpileswas introduced.
These modified sandpiles share the microscopic rules with
their standard(slowly driven and dissipative) counterparts,
but with neither driving(no addition of sand grains) nor
dissipation; i.e., the total amount of sand(energy) becomes a
conserved quantity acting as a control parameter. In this way,
if a standard sandpile in its stationary critical state has an
average density of grains(or energy) zc, it can be shown that
its fixed-energy counterpart exhibits a transition from an ac-
tive to an absorbing phase at preciselyzc, while it is in an
absorbing(active) state below(above) this value.Slow driv-
ing and dissipation define a mechanism which is able to pin
the system to its critical point[6–9].

Using this analogy to systems with AS[13], a field theo-
retical description ofstochastic sandpileshas been proposed
[6,7,9], which includes the two more relevant features of
stochastic sandpiles:(i) the presence of infinitely many AS
and(ii ) the global conservation of the total energy. The phe-
nomenological field theory(Langevin equation) aimed at
capturing the relevant critical features of this type of systems
is similar to the well-known Reggeon field theory(RFT)
[12,14] (describing generic systems with AS) but it is
coupled linearly to a conserved nondiffusive energy field,
namely[7,9],

]tr = Da¹
2r − mr − lr2 + vrf + sÎrhsx,td,

]tf = Dc¹
2r, s1d

whereDa, Dc, m, l and v are constants,rsx,td and fsx,td
are the activity and the energy field respectively,h is a zero-
mean Gaussian white noise.

Soon after the introduction of the previous Langevin
equation its range of applicability was extended, as it was
conjectured to describe all systems with many AS and an
auxiliary conserved and nondiffusive(or static) field [15]. In
particular, for a reaction-diffusion model in this family an
equation similar to Eq.(1) was derived rigorously by using
standard Fock-space formalism techniques[15–17]. To be
more precise, we should mention that the derived set of
equations includes some higher order(irrelevant) terms such
as noise crossed-correlations, whose role in the asymptotic
properties is not clear.

A priori, it is not straightforward to decide from a field
theoretical point of view whether the extra conservation law
induces a critical behavior different from that of RFT or if,
on the contrary, it is an irrelevant perturbation at the RFT
renormalization group fixed point[14]. From the theory side,
it has been recently argued by van Wijland that the Langevin
equation is renormalizable indc=6 [21], while other authors
have previously claimeddc=4 [6,7,9]. Some mean field re-
sults and simulations in high dimensions of discrete models
[19] and also a new method recently proposed by Lübeck
and Heger to determine the upper critical dimension of sys-
tems with AS[20] lead rather convincingly todc=4, but we
are still far from a full clarification of these issues at a the-
oretical level. In any case, it is accepted, from numerical
evidence, that this constitutes a different universality class,
usually called Manna class, or C-DP(in the spirit of Hohen-
berg and Halperin[22]) [6,9,15–20].

In order to shed some light on these questions, it is our
purpose here to integrate numerically Eq.(1) in one, two,
and three dimensions. In this way we will verify whether this
set of Langevin equations describes correctly the critical
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properties of the discrete models reported to belong to this
class. We employ an integration scheme introduced by Dick-
man some years back[23] which, to the best of our knowl-
edge, is the only working method for Langevin equations
including a RFT-like type of noise. We will verify that in-
deed the Langevin equation as it is reproduces remarkably
well the known exponents(as measured in discrete models in
this class), thus providing us with a sound base for further
theoretical analyses of this universality class and of the role
of conservation in self-organizing systems[5].

THE MODEL

We integrate numerically Eq.(1) [6,7,9]. A technical
problem appears when a standard(Euler [24]) discretization
scheme is used: due the symmetry ofh around zero and the
fact that the noise term dominates the evolution whenever
the density field is sufficiently small, negative(unphysical)
local values of the density field can be generated. In order to
overcome this difficulty a different, nontrivial integration
scheme was proposed by Dickman for the RFT[23]. It con-
sists in discretizing the density fieldr as well as time and
space. Thequantaof density of activity can be taken propor-
tional to the discrete time step,Dr=Dt, in such a way that
the continuous model is recovered in the limitsDt ,Dx→0d
[23]. The activity density at a given sitei and timet is then
given byrsi ,td=msi ,tdDr, wheremsi ,td takes integer values.
Note thatmsi ,td diverges as the continuous limitsDr→0d is
approached(which makes a strong diffence with respect to
intrinsically discrete, particle models). Further details of the
scheme, which has been successfully applied to both the
RFT and to systems with many AS[25], leading to good
estimations of phase diagrams and critical properties, can be
found in Ref.[23]. In order to extend the algorithm to our
problem, the second equation of Eq.(1) is integrated using
an usual Euler scheme with a continuously varying field
fsi ,td, while for the equation ofr, we follow Dickman’s
ideas. First, we calculate

f̂si,t + Dtd − fsi,td = DtfDa¹d
2msi,td − mmsi,td − lDrm2si,td

+ vmsi,tdfsi,tdg + sm1/2si,tdh8si,td,

s2d

whereDt=Dr, h8 is a zero-mean Gaussian white noise,¹d
2 is

the discrete Laplacian operator,fsi ,td is an auxiliary continu-

ous field, andf̂si ,td is an intermediate stage offsi ,td sjust
before the new quanta of activity have been substractedd.
Then, after each integration step, the number of quanta ofr,
msi ,td, is updated according to

msi,t + Dtd = msi,td +E f f̂si,t + Dtdg,

fsi,t + Dtd = f̂si,t + Dtd −E f f̂si,t + Dtdg. s3d

Initial conditions are taken as follows:(i) fsx,t=0d=f0f1
+a¹2«sxdg, where « is a normalized Gaussian noise with

zero average anda is a constant establishing the range of
relative variation allowed tof with respect to its mean value
f0. f0 is the control parameter, and except for transient ef-
fects results should not depend ona. (ii ) The initial condition
for r is chosen by randomly distributing active-field quanta,
in such a way thatrsx,t=0døfsx,t=0d everywhere.

We have carried out extensive simulations of the coupled
equations(1) in one-, two-, and three-dimensional lattices. In
all the cases, the time mesh has been fixed toDt=0.01, and
Dx=1 (we have verified that our estimations of critical ex-
ponents are not significantly affected upon further decreasing
these constants). This choice impliesDr=0.01. As initial
conditions, we usually start[in one dimension(1D)] with
100 quanta per site; the evolution of the system drives this
quantity to much lower values at the critical point. We also
fix Da=Dc=5 andm=l=v=a=1. The noise amplitudes is
taken different for the various dimensions in order to fix the
transition in a reasonable(but arbitrary) value off0: s=1 in
1D, s=0.5 in 2D, ands=0.35 in 3D. We have verified that
the total energy is conserved within the considered precision,
in all cases. The number of runs goes from 102 up to 105

depending on system size.

RESULTS

As we varyf0, a continuous transition separating the ab-
sorbing(small f0) from active phase(largef0) is observed
at a critical thresholdfc. The usual scaling lawsr,sf0

−fcdb, j,sf0−fcd−n', and t,sf0−fcd−ni, wherej std is
the correlation length(time), are expected to hold[11,12].
This leads to the definition of the dynamic exponent ast
,jz, with z=ni /n'. It is also expected that at the critical
point the density of activity presents a power law decay with
time, r, t−u. However, in some models, an anomalous criti-
cal time behavior ofr has been reported[9,10,15–17]. We
shall later return to this issue. As usual, the finite size of
simulated systems induces the possibility of falling into the
AS even forf0.fc. This fact has two consequences. The
density of activityr does not reach a stationary state close to
the critical point. Hence, we are forced to consider the den-

FIG. 1. Stationary value ofrsurv for different system sizes in 1D.
Squares correspond tof0=1.6369, circles tof0=1.6371, and dia-
monds tof0=1.6373. In the inset, the same graph is displayed but
for 2D data; squares are forf0=0.631, circles forf0=0.6325, and
diamonds forf0=0.635.
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sity of surviving trials,rsurv, in order to realize the finite size
analysis ofr. On the other hand, this provides us with a
method to measure the dynamic exponentz, by determining
a characteristic decaying time as a function of system size.
We have studied systems of linear size up toL=4000 in 1D,
L=400 in 2D, andL=80 in 3D. The dependence of the sta-
tionary activity density on system size for several values of
f0 in a one-dimensional system is shown in Fig. 1. From this
picture, we deduce the critical point location in 1D,
fcs1Dd=1.6371s2d (numbers in parentheses correspond to
the statistic uncertainty in the last digit). From the slope of
the log-log plot, we obtainb /n's1Dd=0.214s8d. The expo-
nent b may be estimated in an independent way from the
scaling of the stationary value ofrsurv for large system sizes,
as a function ofsf0−fcd above the critical point. This gives
bs1Dd=0.28s2d. By studying the time evolution of the char-
acteristic time of the surviving probabilityPstd at criticality,
we obtain zs1Dd=1.47s4d. Finally, the exponentus1Dd

=0.14s1d may be measured from the critical power law de-
cay of r in time, as may be seen in Fig. 2. Errors in these
exponents mostly come from the uncertainty in the determi-
nation of the critical point. Repeating this process in higher
dimensions, we find fcs2Dd=0.6325s5d and fcs3Dd
=0.456s1d, together with the critical exponents listed in
Table I. In the table, we have also included the critical expo-
nents of discrete models claimed to belong to the same uni-
versality, and also(for comparison) those of the directed per-
colation (DP) class. Observe the rather remarkable
agreement(within error bars) between all the measured ex-
ponents and their counterparts in discrete models. Let us re-
mark that, for those exponents for which the differences with
DP values are larger, our values also deviate from DP. As we
have already mentioned, some models in the Manna univer-
sality class may present an anomalous behavior in the time
decay of the activity density at the critical point[9,10,15–17]
rst ,fcd. This anomaly implies that, apparently, the scaling
relationb=uni fails [9,10,15–17], and thatrstd may decay in
a nonmonotonous way at criticality. In our case, there is no
anomalous decay ind=1 (Fig. 2). However, the anomaly is
present both ind=2 and ind=3. As can be seen in Fig. 3, the

TABLE I. Critical exponents for steady state experiments ind=1,2, and 3.Figures in parentheses
indicate the statistical uncertainty in the last digit. C-DP exponents are from Refs.[16,18] and DP exponents
from Refs.[26]. In 1D, b /n' for C-DP has been calculated using the scaling relationb /n'=zu; and ni is
derived for both Eq.(1) and C-DP fromz=ni /n'.

D Model b b /n' z ni u

Eq. (1) 0.28s2d 0.214s8d 1.47s4d 1.95s15d 0.14s1d
1 C-DP 0.29s2d 0.217s9d 1.55s3d 2.07s10d 0.140s5d

DP 0.276... 0.252... 1.580... 1.733... 0.159...

Eq. (1) 0.66s2d 0.85s8d 1.51s3d 1.27s7d 0.50s5d
2 C-DP 0.64s2d 0.78s2d 1.55s3d 1.29s8d 0.51s1d

DP 0.583s4d 0.795s6d 1.766s2d 1.295s6d 0.450s2d

Eq. (1) 0.84s5d 1.44s5d 1.69s4d 1.07s8d 0.93s3d
3 C-DP 0.88s2d 1.39s4d 1.73s5d 1.12s8d 0.88s2d

DP 0.80s2d 1.39s1d 1.901s5d 1.105s5d 0.730s4d

FIG. 2. Evolution ofr (continuous line) andrsurv (dashed lines)
for several system sizes in 1D. The curve ofr is for L=4000 and
those ofrsurv for (from top to bottom) L=20,100, and 500. The
slope of the straight line isu=0.14. In the inset, the same data in 2D
are represented;rsurv curves correspond from top to bottom toL
=10,25,70 andL=280, andr to L=280. The slope of the line is
u=−0.65[27].

FIG. 3. Anomalous time decay of the activity density in 2D, for
L=280 andf0=0.711.
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activity density decays initially faster than a power law,
showing afterwards a nonmonotonous behavior. The fast de-
cay explains the anomalous values ofu, not satisfying scal-
ing relations, usually reported in the literature[9]. Later on,r
increases before reaching the steady state value,rstatsLd after
a certain timet3sLd. The criterion to fix the latter is arbitrary;
we have chosen it as the time whenrsurvstd reaches a value
that does not differ more than 5% of the final stationary
estimation. If the points(t3sLd ,rstatsLdd are represented in a
log-log plot at the critical point, an alternative value for the
exponentu is found, which is related to the saturation time
scale and satisfies the scaling laws. This value in two dimen-
sions is u<0.50 [27] (with a large statistic uncertainty),
which is much closer to the more accurate measurements
reported in the literature for models in this class(u=0.51 for
C-DP[18]). The common presence of anomalous behavior in
discrete systems[9,10,15–17] and in the continuous theory
reinforces the claim that both belong to the same universality
class:they share not only the critical behavior but also the
dynamical anomalies. A deeper study of the physical origin
of this anomaly is still missing but, essentially, it is related to
the existence of different relaxation time scales. On the other
hand, this anomaly is absent for flat initial conditions[28].

CONCLUSIONS

This is the first time, to our knowledge, that the phenom-
enological Langevin equation, proposed some time ago to
capture the criticality of this universality class[Eq. (1)], has
been numerically integrated. Our results in one-, two-, and
three-dimensional systems support the claim that it consti-
tutes a sound minimal continuous representation of this class,
sharing all the critical exponents as well as the dynamical
anomalies with the discrete models. Therefore, no other
higher order terms nor other noise correlations are needed to
describe properly this class. Now that the situation has been
clarified from the numerical side, further theoretical analyses
are highly desirable in order to put this puzzling universality
class under more firm bases.

We thank M. A. Santos, H. Chaté, R. Pastor-Satorras, and
R. Dickman for useful comments, as well as P. Hurtado for
his helpful participation in the early stages of this work. Sup-
port from the Spanish MCyT(FEDER) under Project No.
BFM2001-2841, from the postdoctoral program of the “Cen-
tro de Física do Porto,” and from the Portuguese Research
Council under Grant No. SFRH/BPD/5557/2001 are ac-
knowledged.

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381
(1987); Phys. Rev. A38, 364(1988); D. Dhar, Phys. Rev. Lett.
64, 1613 (1990); S. N. Majumdar and D. Dhar, Physica A
185, 129 (1992).

[2] S. S. Manna, J. Phys. A24, L363 (1991).
[3] Y.-C. Zhang, Phys. Rev. Lett.63, 470 (1989); L. Pietroneroet

al., Physica A 173, 129 (1991); S. Maslov and Y-C. Zhang,
ibid. 223, 1 (1996).

[4] H. J. Jensen,Self Organized Criticality(Cambridge University
Press, Cambridge, 1998); D. Dhar, Physica A263, 69 (1999).

[5] G. Grinstein, inScale Invariance, Interfaces and Nonequilib-
rium Dynamics, Vol. 344 of NATO Advanced Studies Institute,
Series B: Physics, edited by A. McKaneet al. (Plenum, New
York, 1995).

[6] R. Dickmanet al., Braz. J. Phys.30, 27 (2000); M. A. Muñoz
et al., in Modeling Complex Systems, edited by Pedro L. Gar-
rido and Joaquín Marro, AIP Conf. Proc. 574(AIP, Melville,
NY, 2001), p. 102.

[7] A. Vespignani, R. Dickman, M. A. Muñoz, and S. Zapperi,
Phys. Rev. Lett.81, 5676(1998).

[8] R. Dickmanet al., Phys. Rev. E57, 5095(1998).
[9] A. Vespignani, R. Dickman, M. A. Muñoz, and S. Zapperi,

Phys. Rev. E62, 4564(2000).
[10] R. Dickmanet al., Phys. Rev. E64, 056104(2001).
[11] J. Marro and R. Dickman,Nonequilibrium Phase Transitions

and Critical Phenomena(Cambridge University Press, Cam-
bridge, 1998).

[12] H. Hinrichsen, Adv. Phys.49, 1 (2000).
[13] Other possibility studied in the literature is the mapping of

SOC models into models for the depinning of interfaces in
random media. See, for instance, the exact mapping of G.
Pruessner, e-print cond-mat/0209531, and references therein.

[14] H. K. Janssen, Z. Phys. B: Condens. Matter42, 151(1981); P.
Grassberger,ibid. 47, 365 (1982).

[15] M. Rossi, R. Pastor-Satorras, and A. Vespignani, Phys. Rev.
Lett. 85, 1803(2000).

[16] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E62, R5875
(2000).

[17] R. Pastor-Satorras and A. Vespignani, Eur. Phys. J. B19, 583
(2001).

[18] J. Kockelkoren and H. Chaté, e-print cond-mat/0306039, 2003.
[19] S. Lübeck and A. Hutch, J. Phys. A35, 4853(2002); 34, L577

(2001); S. Lübeck, Phys. Rev. E64, 016123 (2001); 66,
046114(2002).

[20] S. Lübeck and P. C. Heger, Phys. Rev. Lett.90, 230601
(2003); S. Lübeck, e-print cond-mat/0309165.

[21] F. van Wijland, Phys. Rev. Lett.89, 190602(2002).
[22] P. C. Hohenberg and B. J. Halperin, Rev. Mod. Phys.49, 435

(1977).
[23] R. Dickman, Phys. Rev. E50, 4404(1994).
[24] The same problem remains when employing more sophisti-

cated standard discretization schemes.
[25] C. López and M. A. Muñoz, Phys. Rev. E56, 4864(1997).
[26] M. A. Muñoz, R. Dickman, A. Vespignani, and S. Zapperi,

Phys. Rev. E59, 6175(1999), and references therein.
[27] Compare this with the valueu<0.65 obtained from the initial

decay ind=2.
[28] H. Chaté(private communication).

RAMASCO, MUÑOZ, AND DA SILVA SANTOS PHYSICAL REVIEW E69, 045105(R) (2004)

RAPID COMMUNICATIONS

045105-4


