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ABSTRACT

Financial networks have been the object of intense quantitative analysis during the last few decades. Their structure and the dynamical
processes on top of them are of utmost importance to understand the emergent collective behavior behind economic and financial crises. In
this paper, we propose a stylized model to understand the “domino effect” of distress in client–supplier networks. We provide a theoretical
analysis of the model, and we apply it to several synthetic networks and a real customer–supplier network, supplied by one of the largest banks
in Europe. Besides, the proposed model allows us to investigate possible scenarios for the functioning of the financial distress propagation
and to assess the economic health of the full network. The main novelty of this model is the combination of two stochastic terms: an additive
noise, accounting by the capability of trading and paying obligations, and a multiplicative noise representing the variations of the market.
Both parameters are crucial to determining the maximum default probability and the diffusion process characteristics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0041104

Business interactions daily form a direct and weighted cus-
tomer–supplier network whose structure has in-depth implica-
tions in its functioning. The financial distress of one company
depends on the ability of their clients to fulfill their payments.
Otherwise, a firm is not able to keep on working unless it applies
for a loan. The recent financial crisis has prompted much new
research on the interconnectedness of companies and the extent
to which it contributes to systemic fragility. Here, we explore the
interplay between network complexity and market stability in a
deliberately simplified model for financial distress propagation.

I. INTRODUCTION

Network theory and non-linear systems have been widely
used in economy and finance.1–4 In particular, the study of

customer–supplier networks is increasingly growing because of their
fundamental role in the optimization of the production chain and
the analysis of a systemic risk.5–8 Although companies select whom
to trade with, they do not control whom the clients of their suppliers
are.9 Consequently, instead of having a neat supply chain, suppliers
and clients are all interrelated as entities of a large complex trading
network.

Economic network properties have been studied at dif-
ferent scales, e.g., countries,10 industries,3 or stock exchange
markets.11 Interestingly, those networks showed a power-law degree
distribution, implying the existence of hubs. Explanations for
this phenomenon have been largely investigated in the network
dynamics area as the “rich-gets-richer” effect by using differ-
ent models.12,13 Beyond the distribution of connections, other
characteristics such as the clustering level have been studied.14 A
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complete review of empirical economic network models can be
found at Ref. 15.

One of the main conclusions of these works is that the hetero-
geneity of network connectivity strongly affects the probability of
observing a large scale effect, the most disquieting being the possi-
bility of failure cascades,16–18 which increase the systemic risk and
the fragility of financial and economic systems.19–22 A simple rule
of thumb can be deducted from these works: the larger the aver-
age degree of the network, the larger the probability of observing
a system-size cascade. Moreover, recent studies revealed signifi-
cant correlations between local topological properties of a given
node and its risk of default combined with business cycle corre-
lations between communities. Such correlations make that firms
with a similar risk profile are statistically more connected among
themselves.23–25 Knowing this, the surge of financial distress in some
companies in a real network, combined with the rapid spread of
the uncertainty about its consequences, may lead to a significant
increase in volatility, making the whole system more vulnerable to
adverse economic events.26,27 Therefore, the analysis and forecasting
of scenarios where the resilience of real financial networks is prone
to contagion, as well as the circumstances under which it becomes
systemic, have a paramount importance.28–31,38,39

Several works have analyzed the dynamics of financial distress
propagation using different models and networks.32–34 In particu-
lar, we focus our attention on Ref. 35, where an additive model of
the economy was introduced. In this model, the time evolution is
described by an equation capturing both exchanges between individ-
uals and random speculative trading on a synthetic heterogeneous
(power-law) network. The main conclusion of this work is that
wealth tends to concentrate on a few agents following a “Pareto”-tail
distribution. The authors drew this conclusion using a simple but
effective equation where trading was introduced as two independent
additive noises over time.

Following the intuition introduced in this paper,35 our work
formalizes a flexible and intuitive model for quantifying distress
and default contagion in customer–supplier networks. Our pro-
posed model incorporates any possible network information and
a combination of additive and multiplicative noise interactions,
representing the network economic activity and market volatility,
respectively.

The model aims at quantifying the problem of distress propa-
gation based on two stylized factors: the capability of companies to
trade and the market uncertainty or volatility. Here, we understand
trading as the company’s ability to collect and pay debts and volatil-
ity as an external factor affecting each company independently.
After checking analytically that our model reaches a steady-state,
we perform a set of experimental scenarios using synthetic network
typologies. From them, it is possible to extract meaningful insights
about how network topology affects distress propagation. Finally, we
demonstrate our model’s applicability in a real customer–supplier
network provided by a Spanish bank.

The rest of this paper is organized as follows. First, the theo-
retical basis for distress propagation is introduced in Sec. II, and in
Secs. III and IV, we analyze the model from a numerical perspective.
Then, in Sec. V, we discuss meaningful insights from several syn-
thetic but realistic network structures. In Sec. VI, we validate our
model in a real network provided by a large bank in Spain. This

paper concludes with a summary of our findings and an outline of
future research.

II. FINANCIAL DISTRESS PROPAGATION MODEL

In accordance with Ref. 35, we assume that the liquidity of a
company is a time-dependent variable elusive to direct quantifica-
tion. However, it could be inferred through two elements: the market
volatility and the money exchanged in the collection and payments
network. On the one hand, volatility may affect companies’ payment
capacity depending on their market exposure. On the other hand, its
collection and payments structure and activation will be essential for
it is the cause of the exposure of the company liquidity to its clients’
liquidity. There is an additional element, the liquidity ratio at time
0, which stands for the initial conditions of the company. The larger
this ratio, the more resilient the company will be to external volatility
and changes in its network. Once stated that the balance equations
that infer the liquidity of a company can be extended to an interact-
ing model, we call a liquidity model. Its mathematical formulation is
as follows:

Li(t + 1) = Li(t) (1 + η(0, σ))

+
∑

j∈Ni

wji P(t)H(Lj(t)− wji)

−
∑

j∈Ni

wij P(t)H(Li(t)− wij), (1)

where Li(t) stands for the amount of money of node i at time t, which
represents the available liquidity, and η(0, σ) represents a Gaussian
noise with mean µ equal to 0 and a standard deviation σ . Then, Ni

stands for the set of neighbors for node i; thus, wji and wik corre-
spond to the weight of an edge from j to i and vice versa. P(t) is a
random variable that follows a Bernoulli distribution with probabil-
ity p. Finally, H(Li(t)− wij) represents a Heaviside step function that
valuates to 1 if the node i has enough money for doing the transfer
and 0 otherwise.

The proposed model depends on three main parameters: Li(0),
the liquidity at time t = 0; σ , which accounts for market volatil-
ity; and p, which accounts for the money exchange in the collection
and payments network. Note that several Li prescriptions are pos-
sible. Here, we consider that it corresponds to the ratio between
the in-strength and out-strength of the node Rs. Other prescriptions
do not affect the main message of this paper. The market volatil-
ity is supposed to follow a Gaussian distribution where µ and σ
account for the mean and standard deviation. The volatility effect
is proportional to the liquidity of the company and may affect in
a positive or negative way; for this reason, we have considered the
mean to be zero (µ = 0). These impacts are the result of changes in
the current scenario. The money exchange is controlled by a global
parameter p ranging from 0 to 1. When p = 1, the network is fully
activated, meaning that all money exchanges are taking place. When
the network is not fully activated, p is the fraction of active payments.

III. ANALYSIS OF THE MODEL

The aforementioned discrete model allows us to simulate dif-
ferent scenarios. In this section, we focus on a very simple scenario
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yet analytically tractable, consisting of a single company interacting
with an external market. In this particular case, we can perform an
analytical continuation of the discrete equations.

Keeping the same notation as above, the evolution of the liq-
uidity of a single company could be written as a Langevin equation
as

dL

dt
= Lψ(t)+ η(t)+ c, (2)

where c is a constant accounting for the unbalance between incom-
ing and outgoing money flows and connects to Rs in the discrete
model [c = (Rs − 1) sout, where sout is the initial total money out-
put of the node], ψ(t) and η(t) are random noises with averages
〈η〉 = 〈ψ〉 = 0 and correlations

〈η(t) η(t′)〉 = α2 δ(t − t′),

〈ψ(t) ψ(t′)〉 = σ 2 δ(t − t′),
(3)

where δ() is the Dirac delta and α and σ are related to other
two parameters of our discrete model. In the case of σ , the iden-
tification is direct, while the variance of the binomial should be
represented by α2, p (1 − p) = α2. Equation (2) must be considered
in the Itô interpretation because the variable L(t) and the noise ψ(t)
are independent when multiplied at time t.

Following Gardiner36 and Toral,37 one can write a Fokker–
Planck equation out of the Langevin (2). In the Itô framework, this
yields

∂P(L, t)

∂t
= −

∂

∂L
{c P(L, t)} +

1

2

∂2

∂L2

{

(α2 + σ 2 L2) P(L, T)
}

, (4)

where P(L, t) is the probability of having a certain liquidity value at
time t. Assuming that there is a stationary solution, which means
that ∂P/∂t = 0, we get

d

dL

[

(α2 + σ 2 L2) P
]

= 2 c P + κ , (5)

where κ is a constant. κ can take any value, but for convenience, we
can take κ = 0 and check if a solution exists. In this case, it does
exist, and it is

P(L) =
c e

2 c Atan((L−L0) σ/α)
α σ

sinh( cπ
α σ
)

(

α2 + σ 2 (L − L0)
2
) . (6)

Atan() stands for the arctangent function, sinh() is the hyperbolic
sine, and L0 the initial liquidity. Note that the liquidity distribution
shows a power-law decay for large values of L as ∼ L−2. The prob-
ability of default, Pb, can then be calculated by integrating P(L) for
the negative liquidity values, which yields

Pb =

∫ 0

−∞

P(L) dL

=
1

2 sinh( cπ
α σ
)

[

e−
2 c Atan(L0 σ/α)

σ α − e− cπ
α σ

]

. (7)

Given the relation between p and α, α =
√

p (1 − p).
It is interesting to repeat the calculation for c = 0. This can be

done by retaking (5) and equating c = 0. The resulting stationary

distribution then becomes

P(L) =
α σ

π
(

α2 + σ 2 (L − L0)
2
) . (8)

The probability of default is

Pb =

∫ 0

−∞

P(L) dL =
1

2
−

Atan(L0 σ/α)

π
. (9)

This latter configuration provides a more symmetric solution
with a Cauchy–Lorentz distribution. As occurs with the random
walks and diffusion, the system shows memory effects since it
remembers the initial condition with the distributions P(L) remain-
ing centered around L0. In contrast to diffusion, in this case, the
distribution P(L) reaches a stationary state. The role of the driving
term c, which in the discrete model corresponds to the unbalance
between money received and payments, is to induce an asymmetry
in the liquidity distribution depending on the sign of c, and this is
toward positive L if c > 0, and toward negative ones otherwise. The
effect of c modulates thus (increases or decreases) the probability of
bankruptcy.

The analytical results are confirmed by numerically integrating
Eq. (2). Figure 1 shows the liquidity distributions obtained for sev-
eral values of σ and c by direct Euler integration. P(L) distributions
are plotted when the system reaches a steady-state. The analyti-
cal expressions (6) and (8) represent the goodness of the analytical
approximation fitting. One can easily appreciate how c introduces an
asymmetry in P(L). However, the interplay between the multiplica-
tive noise σ and the driving c influences the bankruptcy probability
[the integral of P(L) for negative values of L].

IV. NUMERICAL SIMULATIONS ON DISCRETE

EQUATIONS

To better understand the proposed model dynamics, we have
built a single node network as depicted in Fig. 2(a). In this basic
topology, a single node N1 is connected to a market node N0, which
provides it its earning and expenses.

As an initial experiment, we set the liquidity ratio Rs equal to
1, meaning that N1 earns 0.1 from the market but pays 0.1 back to
it. This Rs value means that N1 trades without increases on average.
We have simulated 10 000 different scenarios for 1000-time steps for
several market noise values (σ ) and activation of the system (p).

The starting liquidity of N1 has been initialized at 0.1, being
capable to do the first payment. However, if it is necessary, indebt-
edness is allowed. Hence, no Heaviside function is used in the
model. This means that nodes are allowed to get into debt. With
this setting in mind, we have simulated scenarios for economies with
low volatility (σ = 0.05), medium volatility (σ = 0.1), and highly
volatile economies (σ = 0.3). It is important to highlight that even
if the σ parameter in both discrete and continuous models means
the same, their values are not equivalent.

Intending to validate the discrete model, the distributions of
the core system liquidity were also analyzed for different time steps.
Figures 2(b)–2(d) show the liquidity distributions obtained for dif-
ferent values of σ and p. For time-step 1000, there is a peak around
0.1 and a symmetry: the distribution is symmetric as it is observed
in the theoretical model when c = 0. The peak increases and tails
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FIG. 1. Comparison of the distribution of liquidity for the continuous approximation integrating Eq. (2) and using the expressions (6) and (8). The integration is performed
with an Euler method with1t = 0.01, 1 × 106 noise realizations, and with initial liquidity L0 = 0.1. In (a) without driving c = 0 and in (b) with c = 1.

flatten as volatility increases, although the distribution remains sym-
metric. However, the noise effect is still perceptible both in the peak
but also in the tails of the distribution.

Another way of representing the distribution of the core sys-
tem liquidity of N1 is with boxplots. In Figs. 2(f)–2(h), the spread of
the liquidity is greater for p = 0.5 and minimal for p = 0 and p = 1.
This result is in line with the idea of maximum entropy systems,
which reach their maximum variance where there is no informa-
tion. This can be observed for any σ . Moreover, the median of the
liquidity remains stable at 0.1, as expected since the liquidity ratio is
1. We also observe the effect of a higher peak and lower tails in the
boxplots, with a smaller interquartile range.

This means that for a fully activated simulation (p = 1), N1

earns 0.1 from N0 and pays back 0.1. Therefore, in each time step,
there are no profits. Similarly, for p = 0, N1 neither pays anything
nor receives money. Hence, its liquidity does not change because of
the volatility of the market. For p between 0 and 1, we do observe
a symmetric spread, which is consistent to what is observed in
Figs. 2(b)–2(d). Depending on p, the spread of the liquidity for all
possible scenarios increases until p = 0.5 when all possible cases (to
pay–paid, to pay–not paid, not to pay–paid, not to pay–not paid) are
equiprobable. For higher p, the spread decreases again.

Previous figures described the distribution of the liquidity;
however, they are not very illustrative when we want to study if node

FIG. 2. (a) Topology of the one node network. (b)–(d) Distribution of the system liquidity at time T = 1000. Note that the y-scale is logarithmic. (e) Probability of default for
one node. (f)–(h) Distribution of the system liquidity at time T = 1000.
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N1 is suffering from financial distress. To shed some light on this, we
are going to assume that a node has financial distress when it has a
negative liquidity value. We refer to these nodes as defaulted. This
simplification allows us to introduce the idea of default probabil-
ity as the probability that a node has negative liquidity. Figure 2(e)
shows the behavior of such probability with respect to the Bernoulli
probability for both simulations (Rs = 1).

The main result is that we observe a probability of default for
any value of the Bernoulli probability. In the case of Rs = 1, the
default probability tends to 0.5 as time increases. These two results
mean that for any activation of the system, the distribution of liq-
uidity tends to the perfect symmetry if Rs = 1. We also observe
that the distribution of volatility σ does not influence this qualita-
tive behavior of the probability of default concerning the Bernoulli
probability.

V. NUMERICAL SIMULATIONS ON SYNTHETIC

NETWORKS

To simulate the financial distress propagation on diverse sub-
strates, we have extended our one node simulation to a more realistic
setting. To implement that, there are two options: first, to simulate
companies assuming we know all their connections, which is diffi-
cult to fulfill, and second, to create a market node that represents the
unknown connections between companies and those with individ-
uals. For this second option, we need to define an average liquidity
ratio that companies must keep with the market node. For this case,
the market node has infinite liquidity and transfers money to the
nodes according to the liquidity ratio equal to 1.5.

To do so, we have created two power-law synthetic networks of
1000 nodes with and without market. In such networks, some nodes
Ni are highly connected, meaning that they have many links to other

Nj nodes for j 6= i, although the number of connections among all
nodes is low. Due to this, we replicate an economical structure with
prevalent and secondary companies as it is observed in real markets.

We have generated both networks as follows: each new node
adds three random edges, with a probability of adding a new triangle
after adding an edge of 30%. In this case, we have a market node, and
all nodes may be linked to the market node N0 to keep a constant
liquidity ratio.

To simulate a growing economic context, we set the liquidity
ratio equal to 1.5. This means that for a fully activated simulation
(p = 1), the single node earns 1.5 from the market node and pays
back 1. Therefore, in each time step, profits are 0.5. For a lower acti-
vation of the system, benefits are lower. As in Sec. IV, the starting
liquidity makes all nodes capable of withdrawing the first install-
ment, indebtedness is allowed, and several scenarios are simulated
for different volatilities of the market. For both substrates, we have
calculated 1000 scenarios for 1000 time steps.

For a power law without the market, we observe that the distri-
bution of liquidity is still symmetric as depicted in Figs. 3(b)–3(d).
Moreover, we observe a similar behavior of the distribution of the
liquidity as in the one node setting. That is for higher volatilities, the
peak of the distribution increases (around 1.5 in this case), whereas
the tails have a bigger spread. The boxplot for the highest probability
of Bernoulli shows a greater spread of liquidity.

These new liquidity distributions are different because of the
combination of the number of nodes and volatility. With 1000
nodes, the aggregated Bernoulli probability of all nodes acts as a
binomial distribution, which occurs for both the earnings and pay-
ments. The spread of a binomial distribution increases with p, as it
can be observed in Fig. 3(f)–3(h). We can confirm this for σ = 0.05
when the effect of volatility is very small. The spread of the liquidity
is maximal for p = 1, whereas for p = 0, it is minimal. For higher

FIG. 3. (a) Topology of a power-law network without a market. (b)–(d) Distribution of the system liquidity at time T = 1000. Note that the y-scale is logarithmic. (e) Probability
of default for a power-law network without a market. (f)–(h) Distribution of the system liquidity at time T = 1000.
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volatilities, the multiplicative effect of σ shapes the distribution of
the liquidity, with a maximum in p = 0.5. Therefore, we can con-
clude that the number of active edges matters concerning the range
of the possible liquidity values.

Again, the probability of default [Fig. 3(e)] oscillates around
0.5 at time 1000 for any value of the Bernoulli probability. For this
system, we have a liquidity ratio greater than 1, but there is no liq-
uidity from the market. Note that this network acts at the end as a
closed conservative system. The symmetry of the liquidity distribu-
tion is still present for any volatility. Nevertheless, we only detect
little changes in spread depending on the activation of the network.

When analyzing the results of a network with market node N0,
the main consequence of this addition is an asymmetry of the liquid-
ity distribution and the consequent change of the default probability
curve.

Figures 4(b)–4(d) represent the distribution of liquidity for a
power-law network with the market. These graphs depict an asym-
metry of the distribution of liquidity caused by the presence of the
market node. The spreads are smaller due to the fewer number of
edges between nodes in the power-law network. Both right and left
tails flatten as higher is the σ , whereas the peak increases, as it was
seen before.

The liquidity distribution asymmetry is clearly shown when
we analyze the boxplot for this network [Figs. 4(f)–4(h)]. For any
volatility, both the median and the spread increase with Bernoulli
probability p. The increment of the median is caused indeed by the
injection of credit by the market. On average, all nodes increase their
cash flow every time step by 0.5. The median increase is lower as
higher is the σ , and the distribution of liquidity becomes more sym-
metrical. The aggregated Bernoulli probability, which is a binomial
distribution, causes a greater spread of liquidity.

This asymmetry affects the probability of default. In
Fig. 4(e), the probability of being bankrupt decreases with the

activation of the system p. The cause of this exponential decrease
of the probability of default vs p is that for a more active system, the
market pays more money to the nodes; therefore, their capability of
doing transactions increases. When observing different σ values, we
note that the risk of default increases when σ increases. The reason
for this increase is the larger instability of the market. This fact is
coherent with the real economy, where the larger the uncertainty,
the higher the risk of default.

In summary, the presence of a market node is crucial for the
stability of the system. The fact that a market node always provides
liquidity to the nodes causes an increase in the liquidity median.
Contrarily, when there is no market node, the median of liquidity
remains constant for any p. For the same reason, we cannot see any
difference between the behavior for low and high volatility where
there is a network without the market. Therefore, in that case, the
liquidity ratio (Rs) and the Bernoulli probability [P(t)] control the
risk of default.

VI. REAL CUSTOMER–SUPPLIER NETWORK

EVALUATION

To confirm the validity of our model, we have studied the
financial distress propagation in a real network. To do so, a static
network was built using customer companies of a Spanish bank.
Data cover relationships with both public and private Spanish firms.
The construction’s details of this real network are described in
Appendix A.

Besides, we have also built a null model to understand the
dependency of the results on the structural and dynamical prop-
erties of the system. To assess for structural dependencies of the
results on the topology of the network and the weight distribution,
we have generated a null model consisting of a synthetic generated
Erdos–Renyi network with a similar number of nodes and edges as

FIG. 4. (a) Topology of a power-law network with a market. (b)–(d) Distribution of the system liquidity at time T = 1000. Note that the y-scale is logarithmic. (e) Probability
of default for a power-law network with a market. (f)–(h) Distribution of the system liquidity at time T = 1000.
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FIG. 5. Size of the largest connected component and the clustering coefficient for the Erdos–Renyi and the projected network as p varies.

the real network. The weight distribution is a Gaussian distribution
of µ equal to 1000 e and σ equal to 100.

To compare both networks, Fig. 5 shows the size of the
largest connected component and the clustering coefficient for the
Erdos–Renyi and the projected network as p varies. We observe a
typical percolation threshold in the case of the random network,
while the increase of the size of the largest connected component

is more gradual for the case of the real network. The clustering
coefficient is also larger for the real network.

Having this in mind, our goal here is to study the influence of
the network structure on the fraction of defaulted companies. To do
so, we have executed different simulations for several market volatil-
ity distributions and various values of active percentages of money
exchanges within the network.

FIG. 6. Median of the core system liquidity at time T for different combinations of volatility σ and (a) low, (b) medium, and (c) large Bernoulli probability. On color, σ . Note
that the y-scale is logarithmic and varies for the different subplots.
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FIG. 7. Number of defaulted nodes as a function of Bernoulli probability (Pb) for (a) small and (b) large values of σ at time = 300 iterations.

In Fig. 6, the median of the network companies’ liquidity
reaches the steady-state for different combinations of the model
parameters. We observe that for any activation p of the system, liq-
uidity becomes steady for high volatility, whereas for simulations
without volatility (σ = 0), liquidity is monotonically increasing.

Besides, Fig. 7 shows two different behaviors of the fraction of
defaulted companies concerning the partial activation of payments
of the real network. p∗ is defined as the activation such that the sys-
tem changes the state of activation. When a fraction of payments
larger than p∗ is activated (p > p∗), the global network is mainly
active. As mentioned before, this may correspond to an economic
situation reflecting times of economic wealth. According to the
figure, increasing trade is always beneficial for the number of default
nodes decreases. However, when a fraction of payments lower than
p∗ is activated (p < p∗), the effects of increasing trade depend on the
distribution and magnitude of volatility. For low volatility or policies

that do not stray from normality, increasing trading is beneficial.
However, for high volatility that may affect different companies in
a different manner, increasing trade may allow instabilities in the
network to propagate, increasing the number of default nodes.

To observe if this effect depends on the structure of the
network, we compare the results to the ones obtained with the
Erdos–Renyi null model. Figure 8 shows that the existence of a crit-
ical percentage of network activation p∗ also occurs for the null
model for high volatility, meaning that the network effect of insta-
bility propagation does not depend on the structural details of the
network.

However, for low volatility, the qualitative response of the
defaulted companies is very different for both networks. For the
real network, there is a sharp decrease of the defaulted companies
when the payments network starts to be activated (small p) and
then decreases slowly, contrary to what happens for the Erdos–Renyi

FIG. 8. Fraction of defaulted nodes (Fd ) as a function of Bernoulli probability (Pb) for (a) small and (b) large values of σ at time = 300 iterations on the Erdos–Renyi synthetic
network.

Chaos 31, 053119 (2021); doi: 10.1063/5.0041104 31, 053119-8

Published under an exclusive license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

network. This behavior is directly linked to two variables: the differ-
ent percolation thresholds and the different liquidity ratios at time 0
for the two networks. The real network does not show any percola-
tion threshold as happens to the Erdos–Renyi. The largest connected
component size increases progressively, and its larger slope occurs
when the percentage of the network activation is lower than 20%.
In this area, the network effect on the number of defaulted com-
panies will be more pronounced [Fig. 7(a)]. Note that the liquidity
ratio at time 0 also differs for the two networks, being larger for
the real network (with a median of approximately 7) than for the
Erdos–Renyi (with a median of approximately 1.7). These results in
a sharper decrease of the fraction of defaulted nodes, as the network
becomes activated, because nodes gain more from each interaction.

VII. CONCLUSIONS

In this article, we have presented a liquidity model to study how
the risk of default propagates in economic networks. The networks
represent economic transactions such as wires to pay for services
or goods. The model is based on previous works on the wealth dis-
tribution and combining two stochastic terms: an additive noise,
accounting by the capability of trading and paying obligations, and
a multiplicative noise representing the variations of the market. The
additive term is regulated by a parameter p. The larger the p, the
more active, in terms of transactions, the network is. The multiplica-
tive term is controlled by a parameter σ . In this case, market instabil-
ity grows with large σ values. We solve analytically and numerically
the model when the system is composed of a single agent and the
environment (market). Our simulations show that network dynam-
ics reach a steady-state even in the presence of large noise values.
Besides, we also demonstrate that the probability of default in this
steady regime reaches a maximum when the trading probability p
is equal to 0.5. For a single agent network, the interplay between
the outbalance of the initial income and outcome money flows and
the multiplicative noise level σ leads to an asymmetry in the final
liquidity distribution. Consequently, this affects the values of the
default probability, even though its maximum still appears at p =

1/2. When many agents interact within a network, the maximum
of the default probability displaces to other values of p. Moreover,
when the network is heterogeneous enough in connectivity (e.g.,
scale-free), we observe cascades of default that may follow a power-
law like distribution. Similar long-tailed cascades are obtained in real
trading networks. To prove this, we have experimented with a net-
work representing company–company interchange data collected by
one of the main Spanish banks. From an economical perspective,
it is important to note that one of the main effects of a crisis is to
reduce trading. This means that the system moves to lower values of
p, and, according to the model, the probability of default increases.
This counter-intuitive result paves the way for theories that suggest
that in an environment of increasing uncertainty, the deceleration of
trading will worsen the crisis while encouraging trading will help to
avoid default cascades.

Generally speaking, the particular network structure of the
economic interaction network and the volatility σ are crucial to
determining the maximum default probability. The shape of the
default cascades is also determined by these two factors. The model

can thus help us to better understand the systemic risks of economic
systems.
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APPENDIX A: REAL NETWORK CONSTRUCTION

To study financial distress propagation in a real network, we
built a static network using BBVA customer companies. BBVA is
the second-largest bank in Spain. Data cover relationships with both
public and private Spanish firms. For each available company, we
extracted several types of relationships described as follows and
annually aggregate them over January to December 2016.

Concretely, we have used the following relationships provided
by the BBVA data science team:

• Customer–supplier third-party payment declaration. Official cus-
tomer–supplier relationships based on third-party payment dec-
laration collected by the BBVA risk management department.
This declaration is used as a mechanism to avoid fraud in com-
panies’ VAT declarations. In it, Spanish companies inform about
their supplier payments and customer earnings.

• Factoring/confirming financial products. There are two types of
edges including financial products relationship between firms:
confirming and factoring. Confirming products are put up when
a bank customer (firm) must pay its suppliers and signs a con-
tract with the bank to be an intermediary in payments allowing
the customer to stretch finance. Factoring products are put out by
a bank customer (firm) having bills to charge their customers and
signs a contract with the bank to be an intermediary and hedge
their receipts, allowing the customer to anticipate payments.

• Wire transfers. Companies also make and receive payments via
cash transfer.

• Customs duties. Companies also make and receive payments via
customs duty.

The above-mentioned edges are directed and weighted accord-
ing to the amount in euros transferred between companies. The
direction of edges follows the path of money injection, e.g., from
customer to supplier. All edges’ weights are aggregated annually.
Self-loops have been removed.

To avoid duplicating the data, if a customer–supplier third-
party payment declaration edge exits, we remove any other edge
between two companies for this edge includes all the others. If the
edge does not exist, we sum the weight of the edges.
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FIG. 9. Power law for the resulting real network.

Naturally, customers are also connected to other companies
that are not BBVA customers and individuals. These types of enti-
ties are grouped on what we call the market node. The reason
behind this decision is that the economical, financial, and connec-
tivity information of BBVA non-client companies are incomplete,
thus affecting the dynamics with missing information. Regarding
individuals, these are considered to be part of the market because
we are interested in modeling dynamics between companies. How-
ever, connections are left as edges (in and out) between BBVA
customer companies and the market node because money flow
between these entities is of paramount importance for their financial
stress. Besides, originally, the number of BBVA customer compa-
nies in the raw data was 559 673, but 36.8% of companies, with
a liquidity ratio different from zero, have negative liquidity every
year. If these companies were incorporated into the network, they
would originate a global failure in the dynamics. The reason for the
negative liquidity is again missing information in most cases; there-
fore, we also group these companies as being part of the market
node.

The resulting network is composed of 1 891 230 direct edges
connecting 385 804 companies. As a result of this aggregation, the
market node in-degree is 220 291, the out-degree 232 752, and its in-
strength and out-strength in the order of billions and hundreds of
billions, respectively. Figure 9 describes the power laws by degree,
in-degree, and out-degree.

APPENDIX B: ERDOS–RENYI NULL MODEL

Finally, we can categorize companies regarding their connec-
tivity. Consequently, we define “sink” companies as those who only
have incoming edges. These are raw material suppliers where we

do not visualize their outgoing edges because most of them are too
small natural resource producers and labor force. We categorize
companies with in-and-out edges as “core” companies and are those
companies that are in intermediate levels of the customer-supply
chain. We are mostly interested in these because they can character-
ize their trade with close certainty. Besides, we encounter companies
that have only outgoing edges (15.5% of the total share). These are
mostly in the outermost level of the customer–supplier chain and are
mainly retailers. We cannot leave out these because they are funda-
mental entities in the whole customer–supplier structure. Therefore,
we create an incoming edge from the market node, thus resembling
end-customer sales. The edge weight is 1.5 times their out-strength.
The reason is that we do not want these to default because we cannot
properly characterize their trade. In the end, we are only interested
in the dynamics of the “core” nodes, and therefore, the results are
focused on them.

To validate the results of the synthetic power-law networks
described in Sec. V, we model an alternative monetary exchange
with random edges among the nodes within an Erdos–Renyi net-
work with and without a market. In these substrates, any node Ni is
linked with the same probability to the other nodes, meaning that it
is statistically independent of the rest of Nj nodes for j 6= i. All nodes
are linked to the market node N0. Here, we first analyze the network
without a market node and later including it.

In Figs. 10(b)–10(d), we observe a similar behavior of the dis-
tribution of the liquidity as in Sec. V. That is, for higher volatilities,
the peak of the distribution increases (around 1.5 in this case),
whereas the tails have a bigger spread. Despite this, the distribu-
tions depicted in Figs. 10(f)–10(h) show some differences compared
to the power law’s charts. Here, for σ = 0.05, the maximum of
liquidity spread is for the greatest activation of the system (p = 1).
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FIG. 10. (a) Topology of an Erdos–Renyi network without a market. (b)–(d) Distribution of the system liquidity at time T = 1000. Note that the y-scale is logarithmic. (e)
Probability of default for an Erdos–Renyi network without a market. (f)–(h) Distribution of the system liquidity at time T = 1000.

Yet, for σ = 0.1, the maximum swifts to p = 0.8 and even to p = 0.5
for σ = 0.3.

Again, an Erdos–Renyi without a market acts as a closed con-
servative system. Therefore, the distribution of the liquidity tends
to the symmetry for any volatility. However, the highest spread of
liquidity does depend on the activation of the market.

For an Erdos–Renyi network with a market, we now observe a
right-tailed liquidity distribution [Figs. 11(b)–11(d)]. This asymme-
try is greater for larger Bernoulli probability p. However, differences
between p become smaller when volatility increases. Both right and
left tails flatten as higher is the σ , whereas the peak increases,
as it was seen before. This asymmetry can also be observed in

FIG. 11. (a) Topology of an Erdos–Renyi network with a market. (b)–(d) Distribution of the system liquidity at time T = 1000. Note that the y-scale is logarithmic. (e) Probability
of default for an Erdos–Renyi network with a market. (f)–(h) Distribution of the system liquidity at time T = 1000.
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Figs. 11(f)–11(h) and affects the probability of default. In Fig. 10(e),
the probability of default also decreases with p.

We observe similar behavior of the probability of default for
Erdos–Renyi and power-law networks. However, we detect a net-
work effect between these two examples with and without a mar-
ket. The connections of the nodes change, being the system more
interconnected in the Erdos–Renyi than in the power-law net-
work. The lower number of edges makes the power-law network
less exposed to the volatility of the market than the Erdos–Renyi
network.
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