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Abstract
Systemic risk of financial institutions and sectoral companies relies on their
inter-dependencies. The inter-connectivity of the financial networks has proven to be
crucial to understand the propagation of default, as it plays a central role to assess the
impact of single default events in the full system. Here, we take advantage of complex
network theory to shed light on the mechanisms behind default propagation. Using
real data from the BBVA, the second largest bank in Spain, we extract a financial
network from customer-supplier transactions among more than 140,000 companies,
and their economic flows. Then, we introduce a computational model, inspired by the
probabilities of default contagion, that allow us to obtain the main statistics of default
diffusion given the network structure at individual and system levels. Our results show
the exposure of different sectors to default cascades, therefore allowing for a
quantification and ranking of sectors accordingly. This information is relevant to
propose countermeasures to default propagation in specific scenarios.

Keywords: Financial networks; Default analysis; Financial sector analytics; SIS
propagation models; Complex systems

1 Introduction
Interconnected financial networks are the fabric where economic agents from different
sectors operate. One of the main challenges we face nowadays on financial networks is as-
sessing systemic risk [1–3]. In the literature, systemic risk is defined as the probability of
having large cascades of entangled economic events. Such cascades are triggered by causes
that range from exogenous shocks to endogenous defaults. Besides, the succession of sev-
eral defaults can jeopardize the full system because network financial inter-dependencies
act as an economic sounding board. The interplay between the topology of the underlying
interaction network and the easiness with which events propagate have proven to be es-
sential to understand the proportion of the financial system affected by default avalanches
and to assess the systemic risk [4].

Avalanches in financial systems are understood as dynamical processes that correlate
individual economic states of the agents when a stress event materializes. This process re-
sembles epidemic spreading in networks [5]. Under a simplifying assumption and to bet-
ter explore the network potential for risk transmission, we model them in a similar way as
epidemic spreading as was recently done in [6–8]. This is an oversimplification, the basic
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mechanisms of default propagation and epidemic spreading have similarities as branch-
ing process and chain reactions. Still in economic systems, especially those involving large
companies such as banks, there are other mechanisms that may delay or even prevent the
final default. Given the simplicity of the epidemic models and the fact that our networks
are mostly formed by small and medium enterprises, we have taken this approach in the
hope of getting direct information on the multi-layer sectoral network interdependencies
and on how the risk can pass from one to the other. The failure of one subject in the finan-
cial network generates a chain reaction through interconnections and causes shocks and
therefore a default risk. This risk is understood as the incapability of one of the partici-
pants to perform their obligations, or at least to accomplish them properly, which leads to
the interruption in the obligation payments of other participants.

One of the most commonly used contagion propagation models corresponds to the cel-
ebrated Susceptible–Infected–Susceptible (SIS). In a SIS model, individuals that are cured
do not develop permanent immunity, but are again susceptible to the “disease”. Similarly,
companies that manage to escape default by overcoming high economic stress can fall
into trouble again later on. Additionally, SIS model provides valuable insights to under-
stand how different situations may affect the outcome of the contagion process, e.g. what
the most efficient technique is for isolating a limited number of companies in a given fi-
nancial network to minimize the risk of observing an avalanche. Epidemic modeling is
still the main application of SIS-like approaches, and the main driver behind the devel-
opment and refinement of this framework through time. However, the contagion analogy
has been applied in different contexts and in particular in those where it is important to
consider the spatial and social structure of systems. Some examples are adoption of fads
and innovations [9], propagation of news and rumors [10] and information diffusion [11].
These are phenomena for which the state of the agent is affected by the interaction with its
neighbors. In the financial context there is a strong causal relation between the financial
and economical state of a company’s clients and how this influences its economical well-
being [12]. This dynamics resembles a Hawkes stochastic process [13], where one event,
under certain circumstances, is able to generate a new set events allowing the diffusion
of a given phenomena [14]. Under this hypothesis, epidemic modeling can shed light on
how systemic risk propagates through financial networks. Besides the contagion analogy,
there are other similarities between the transmission of diseases and the transmission of
financial distress in financial networks. For example, both are branching processes where
one event produces others. But we can also observe some differences. For instance, dis-
ease transmission is usually studied as a continuous phenomena whereas financial distress
is studied in a discrete time scale. Also, there are different levels of homogeneity in both
cases, usually financial networks are more heterogeneous than the population networks
used in disease spreading research.

In this paper we provide a mechanistic model to assess the impact of a particular diffu-
sion process of default on financial networks. To this end, we take as basis a probabilistic
computational framework named microscopic Markov chain approach (MMCA) to com-
pute the probability of the states of individual agents in contagion processes in complex
networks [15–17], and adapt its formulation to the understanding of the default propaga-
tion in financial networks. Further, we analyze the behavior of our proposed model using
real data from the anonymized database of BBVA from December 2015 to December 2016,
covering around 140,000 public and private Spanish firms. We set default labels to 0 or 1
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based on this data, depending on whether a given company was or not in default at the be-
ginning of the considered period. By means of this data we have access to the real network
of interactions and to the initial condition for the dynamics of the default endogenous
propagation.

This paper is organized as follows. First, we review previous work on default propaga-
tion in financial networks. Next, in Sect. 3, we propose a contagion model adapting the
well-known SIS Model. Section 4 provides a complete description of the data used, and
its topological analysis. Section 5 includes a set of experiments to study the main char-
acteristics of default propagation in each inter-connected sector. Later, we examine the
implications of using our default propagation model in Sect. 6. Finally, Sect. 7 provides
some conclusions and future work.

2 Related work
The use of networks in economy and finance has a long tradition. Initial works were con-
ceptual, like [18], where the networks were proposed as tools to represent the interactions
(as links) between economic agents playing the role of nodes. When data started to be-
come available, the popularization of complex networks brought a change of paradigm,
leading to several advances in the field.

For example, the properties of the economic interchange networks between countries
were studied in [19]. Also, the network formed by companies holding shares of other com-
panies was studied for the Milan, New York and NASDAQ stock exchange markets in [20].
Interestingly, these networks show a scale-free nature, which implies that investors hav-
ing a large number of connections are not uncommon. Explanations for this have been
searched in the network dynamics properties mixed with a “rich-gets-richer” effect by
means of different approaches [21, 22]. More recent models have been also proposed in
[23, 24], assuming different hypothesis. A complete review of empirical economic network
models can be found at [25]. Beyond the distribution of connections, other characteristics
such as the level of clustering have been studied [26]. Despite all these works, there are
still numerous open challenges when it comes to fully understanding the structure and
dynamics of economic and financial networks [1, 27, 28].

The reason why these networks attract so much attention is that, besides economic in-
terchanges, financial risk also propagates through them [24, 29–32]. Their stability be-
comes thus an important question [33]. Furthermore, risk and economic distress, and even
default in a second stage, can occur in cascades leading to serious systemic instabilities [32,
34]. Therefore, the resilience of the networks to contagion, as well as the circumstances
under which it becomes systemic has been analyzed in many works [35–37]. Following this
research line, a method called debtrank was introduced to find nodes in financial networks
that can induce large cascades when perturbed [3]. This method allows to search for mea-
sures to mitigate risk propagation [38]. In the special case of networks where the nodes
are banks and the links represent holding of different types of obligations, the complexity
of the products traded such as derivatives [39] and the feedback-loops between solvency
perception and stock and obligation values [40] can play an important role in economic
distress propagation. Many of these previous works have been focused on banking [41,
42], where the risk propagation is related to the stress tests performed by central banks.
These kind of models resorts on ad-hoc mathematical models for financial institutions.
However, as it has been seen in the last crisis, the risk can spill out of the banking sys-
tem to enter other economic sectors. This is why it is of high relevance to consider risk
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propagation in more general economic networks, including different sectors and different
types of nodes, ranging from large holdings to small companies or even the final individ-
ual consumers. This is precisely the direction that we take in the present work where we
use general contagion model to evaluate the default spreading in a highly heterogeneous
network.

3 Default contagion model
Inspired by the Microscopic Markov Chain Approach (MMCA) designed for epidemic
spreading, first we propose an adaptation of the framework for modeling the default cas-
cades observed in the transactions between different companies in real financial networks.
Then we introduce some measures to dynamically analyze the default contagion process
and its functional relations with any sectoral financial network.

3.1 MMCA model for default contagion
The original MMCA model was designed to cope with the propagation of epidemics [15],
where the states of the agents (nodes) forming the network of contacts where binary,
namely, susceptible or infected. In well-mixed populations, the differential equations gov-
erning the number of susceptible (S) and infected (I) individuals are

dS
dt

= –β̃S
I
N

+ μ̃I,

dI
dt

= β̃S
I
N

– μ̃I,
(1)

where N = S(t) + I(t) is the (constant) size of the population. The term I/N accounts for
the probability of contacting an infected individual in a well-mixed population of size N ,
β̃ is the infectivity rate (probability per unit time) for each contact, and μ̃ is the rate at
which one infected individual recovers. Their corresponding differential equations are

S(t + �t) = S(t)
(

1 – β̃�t
I(t)
N

)
+ μ̃�tI(t),

I(t + �t) = I(t)
(

1 – μ̃�t + β̃�t
I(t)
N

S(t)
)

,
(2)

or equivalently

I(t + �t) = I(t) – μ̃�tI(t) + β̃�t
I(t)
N

[
N – I(t)

]
. (3)

Defining ρ(t) = I(t)/N as the fraction of infected individuals in the population, Eq. (3) is
written as

ρ(t + �t) = ρ(t) – μ̃�tρ(t) + β̃�tρ(t)
[
1 – ρ(t)

]
. (4)

Note that this discrete equation can be mapped to networks, and in a microscopic approx-
imation, the density of infected individuals will correspond to the individual probability
of being infected.

In the case of our economic networks, the state of the different agents corresponds to
their liquidity in time according to their initial state and economical activity. To keep
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things as simple and realistic as possible, we assume a discrete-time version of the SIS
model in networks, and adopt its terminology, defining μ = μ̃�t as the probability of de-
fault recovery, and β = β̃�t as the probability of default contagion. In this setting, μ re-
flects the average recovery time a company needs to overcome a default process, whereas
β reveals the average number of interactions with an infected company required to be de-
faulted. Finally, the network of contacts, in this case, is represented as a weighted matrix,
with matrix elements wij accounting for the total sum of money transfers from node i to
node j in 12 months (from a fixed date). The equation governing the default system is then
described as:

pi(t + 1) =
(
1 – qi(t)

)(
1 – pi(t)

)
+ (1 – μ)pi(t) + μ

(
1 – qi(t)

)
pi(t), (5)

where pi(t) is the probability of a node to be in default; qi =
∏N

j=1(1 – βwjipj(t)) the prob-
ability that a given node i is not infected by any of its neighbors. The right hand side of
Eq. (5) is explained as follows: (1 – qi(t))(1 – pi(t)) is the probability that a given node i is
susceptible of entering into default (1 – pi(t)) and it is infected, (1 – qi(t)), by at least one
of its neighbors in default. The term (1 – μ)pi(t) is the probability that a node i in default
does not recover (1 – μ). Finally, the term μ(1 – qi(t))pi(t) corresponds to the probability
that a given node i recovers from default but is reinfected by at least one of its neighbors
already in default (1 – qi(t)).

According to the European Central Bank definition for risk classification [43], the sus-
ceptible state would correspond to a company which is in step 3 (default). In this step,
the credit quality of the company is considered equivalent to a probability of default of
between 0.10% and 0.40% over a one-year horizon. Therefore, after a given period of time
(12–18 months), which depends on its revenue, it can go through the step 2 (cure) and
finally come back to step 1 (normal) if it proves to have a good payment behavior.

By using this model, we computationally analyze the behavior of default contagion
processes in a real topology created by the interactions among different companies. Addi-
tionally, we want to understand the main properties of default propagation and the emer-
gent clusters containing defaulted companies in the full system. Moreover, having a well-
defined sector distribution and their annual revenue, see Fig. 1, we can elucidate if default

Figure 1 Sector and annual revenue distribution of the customer-supplier network. Distribution of the
customer-supplier network by sector and annual revenue. Firms can be classified in 17 sectors according to
their NACE code (NACE (Nomenclature of Economic Activities) code is the European statistical classification of
economic activities) and main economic activity. Besides, firms can be also classified according to their annual
revenue: micro-SME’s (less than 1MM EUR, small (1–5MM EUR), SME’s (5–50MM EUR) and large (more than
50MM EUR)
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cascades depend on sectors and their economical states. Our objective here is not to build
an accurate description of the default process, since for this purpose our model should be
more complex and realistic, but to explore the role that the network structure plays on the
default propagation process with varying economic scenarios.

3.2 Dynamical analysis of default contagion
To analyze the potential for default propagation in a financial network using the defined
contagion model, we define a default probability density ρ as

ρ =
∑N

i=1 pss
i

N
, (6)

where N is the number of companies and pss
i stands for the default probability of com-

pany i at the model’s stationary state. Note that since we are considering a SIS modeling
framework, by construction, the dynamics will always reach a steady state. As shown in
Sect. 3.1, the default probability density depends on the default infection rate β and the re-
covery rate μ. For obtaining ρ , we monitor pi(t) as a function of time in a discrete manner,
until the contagion model reaches the steady state. Note that time represents the itera-
tions of the MMCA recursive model. To do so, we set pi(0) to the real company default
label. For understanding the system dynamics, without loss of generality, we can apply the
classic MMCA framework where the parameter, βi, the contagion infectivity per node, is
constant and equal for all companies in the network.

However, to make this model more realistic we introduce a variation to this setting using
default recovery probability μ dependent on the relative in-degree of each company i.
A particular μi for a company i is therefore defined as

μi =
ki

maxN
j=1(kj)

, (7)

where maxN
j=1(kj) is the maximum in-degree in the network. The intuition behind this het-

erogeneity in the recovery parameter μi is that companies having large number of cus-
tomers will recover faster than those whose market risk is concentrated in a few customers.
Note that this is just one of the possible variations of our default contagion framework.
For instance, the generalization of the heterogeneous μ to other company characteris-
tics/features as balance sheet information or any other individual attribute is straightfor-
ward. Moreover, not only the recovery rate but also the infection probability β can be
defined as company dependent, and/or even depend on group of companies such as eco-
nomical sector (C). So, Eq. (5) can be generalized as

⎧⎨
⎩

pi(t + 1) = (1 – qi(t))(1 – pi(t)) + (1 – μi)pi(t) + μi(1 – qi(t))pi(t),

qi =
∏N

j=1(1 – β)wjipj(t)).
(8)

Accordingly, the proposed modification, Eq. (7), to obtain a in-degree dependent μ is one
of the simplest approaches, since it only varies a parameter using a topological character-
istic such as the relative in-degree.
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3.3 Dynamical properties of the network: onset slope and sensitivity
Naturally, the observed dynamical behavior is the result of an interplay between the
MMCA framework and the network topology. To understand the reasons behind the dif-
ferent sectors’ response to default propagation, we will characterize the dynamical be-
havior of each sector by the onset threshold R0 and the sensitivity S to the initial set of
defaulted companies. Both metrics are descriptors of the expected behavior in the steady
state regime. The onset slope is measured by estimating numerically the critical βc(s) at
which the first default cases start to appear in sector C. Practically, fixing μ, the parameter
β is increased until the number of default cases in the sector in the stationary state goes
over 1% of the real data defaults found in the sector, marking βc(s). All these calculations
are done in the stationary state of the system. When βc(s) is plotted versus μ, one finds a
noisy linear increase and, therefore, we define R0 as the slope of the linear fit.

This property reveals the spreading capacity of the infectious process in each sector.
Larger values imply that when the life times of defaults in the companies of the sector be-
come shorter, one needs higher infectivity to overcome the threshold. Sectors with larger
R0 should be more resilient to general default. From the moment they start to show signif-
icant default, other sectors with lower R0 may be in very bad shape already. Furthermore,
given a certain set of parameters, an isolated default event in one of the sectors with larger
R0 can trigger an avalanche of default on weaker sectors, for which the conditions are fa-
vorable for contagion. In this sense, the R0 value of a sector is also related to the capacity
of the sector to spread default.

Regarding the sector sensitivity to default propagation, this dynamical property mea-
sures the rate of change of ρ(β ,μ) at the transition point (which is normally known as β

cut-off). Computing sensitivity involves fitting a linear regression to the model response
and using its standardized regression coefficients as direct measures of sensitivity. There-
fore this metric describes how susceptible a sector is to default, quite the opposite to R0,
which characterizes how a sector affects the system. The relationship between these two
dynamical descriptors and the network structure will be explored next. As mentioned
before, these are defined at the steady state, but it is also important to understand how
dynamics evolve in the transient regime. This analysis will be carried out by synthetically
concentrating defaulted companies (in specific proportions) in the different sectors and
exploring pair-wise sectoral interactions at the initial steps of the simulation.

3.4 How do sectoral properties of the nodes affect network dynamics?
Since economic crisis often start in a given sector and later expand to others (see for exam-
ple the 2000 energy crisis and the 2008 financial crisis), we are also interested in exploring
the dependence of default propagation on attributes related to each sector, such as sec-
toral default probability density and sectoral inter-connectivity. In particular, to study the
dependence on the sectoral default probability density we rewrite Eq. (6) for a each sector
(C) as:

ρC =
∑

i∈C pss
i

NC
. (9)
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We also propose a metric of in-sectoral inter-connectivity Iin that measures how well, on
average, a sector is connected to other sectors by incoming links:

Iin =
∑

i,j(wij – sin
i

17 )2

NC
, (10)

where NC is the number of companies a certain sector C has, i ∈ C, wij are incoming links
of i (j → i) and sin

i is the company i in-strength. In short, the in-sector inter-connectivity
measures the mean square error with respect to a hypothetical equally distributed situa-
tion where we have a node with incoming weights from all C sectors with equal probability
( sin

i
C ). So, the larger the value, the more heterogeneously connected the sector is to other

sectors by incoming links.

4 Topological analysis of the client-supplier network
Now we describe the sectoral financial network used in the experiments carried out in
this work. To do so, we first provide all the details about network construction. Second,
we report commonly used network statistical descriptors.

4.1 Network construction
Customer-supplier relationships highly depend on economical sectors and the financial
situation of the companies involved. To properly model this situation with real data we
gathered anonymized quarterly data from the official customer-supplier third party pay-
ment declarations collected by the BBVA risk management department. This declaration
is used as a mechanism to avoid fraud in company VAT declarations. here, Spanish firms
(our nodes) inform about their supplier payments and customer earnings. For each avail-
able company, we extracted its operating revenue and financial statement attributes: sector
and default status. Collected data covers from December 2015 to December 2016. Default
labels at the initial step were set to 0 or 1 depending on whether a company was in default
or not at the beginning of this period. By using customer-supplier relationships, and after
removing self-loops, a directed and weighted network with 142,477 nodes and 255,509
edges was obtained. Direction of edges follows the path of money injection (from the cus-
tomer to the supplier). All edge weights (total money transferred) were aggregated annu-
ally and normalized by its source node out-strength. Note that, both BBVA customers and
non-customers were included in a percentage of 63% and 37%, respectively. Therefore, the
network contains an important percentage of missing values.

As illustrated in Fig. 1, most of the companies included in the network are micro-SME’s
and small companies, with an annual revenue smaller than 5 million euros (more than
80% of the informed values). Besides, the most common categories are retail (shops), fol-
lowed by construction & industrial companies. It is important to mention that leisure and
consumer & healthcare are also important sectors in the network. Although nodes be-
longing to energy and financial institutions are only a few, they account for 50% of the
network’s out-strength, whereas other sectors such as retail are relatively abundant in the
network (30% of the nodes) but only account for 3% of the total out-strength. To model
the probability of contagion, we normalized the edge weights by the out-strength of the
source node (customer).As a result, Energy and Financial Institutions account for the 11%

of the normalized out-strength in the network, and Retail for the 5% (20% and 7% of the
corresponding global in-strength). See Table 1 for more details.
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Table 1 Summary of network topological measures by sector where kin and kout stand for the
average in-degree and out-degree, respectively

Sector Size (%) kin kout Default (%) Rank hub Rank auth

Financial institutions 0.046 39.613 45.529 3.650 17 1
Energy 0.083 12.844 8.666 1.111 14 2
Financial services 1.165 6.300 20.265 0.786 13 3
Utilities 1.529 5.589 5.903 1.264 11 4
Telecoms technology & media 3.299 5.960 5.194 1.776 2 5
Basic materials 2.745 5.789 5.350 2.782 6 6
Transportation 4.064 5.411 4.336 1.868 1 7
Retail 23.593 3.973 3.233 1.217 12 8
Retailers 4.273 5.001 3.613 1.885 5 9
Capital goods & industrial services 8.689 4.528 3.098 1.866 9 10
Autos, components & durable goods 1.470 4.454 2.991 1.786 10 11
Consumer & healthcare 7.055 3.259 3.770 1.539 8 12
Construction & infrastructure 8.907 3.067 3.270 3.071 3 13
Unknown 10.159 0.930 1.413 1.942 15 14
Real rstate 6.843 1.517 1.844 3.603 7 15
Leisure 12.861 2.509 2.512 1.511 4 16
Institutions 3.219 5.547 10.764 0.535 16 17

Figure 2 Degree distribution of the customer-supplier network. Client-supplier network degree distribution for
nodes (a) degree, (b) in-degree and (c) out-degree. The networks are highly heterogeneous and heavy tailed

4.2 Statistical descriptors
The first point we address is the degree distribution of the network. The degree distri-
butions of the real network analyzed (total, in- and out-degree) presents a heavy-tail but
does not fit to a power-law. This heavy-tail is relevant for the sake of the analysis given
that it clearly indicates the existence of hubs. The complementary cumulative distribu-
tion functions are displayed in Fig. 2. Table 1 also sorts business sectors according to their
average hub and authority score [44]. The main hub in the network is the transporta-
tion sector, followed by telecoms, Technology & media and construction & infrastructure
sectors. The main authority is related to financial institutions, followed by energy and fi-
nancial services. Hubs and authorities agree with the expected economic behavior. Hub
sectors such as transportation, Construction & Infrastructure and telecoms, Technology
& media, which require energy resources to produce goods, transport them, or even to run
IT services, therefore those sectors have important connections to authorities such as en-
ergy. Note also sectors such as financial institutions and services (credit cards, insurances)
arising as important authorities. This is a direct result of the financial needs that many the
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companies have to operate in Spain. This need is mostly because the average number of
days required to collect invoiced amounts from customers is quite high in Spain, around
90 days.

5 Experimental results
We will study next three different default propagation scenarios. The first one corresponds
to the classical MMCA model where all nodes share the same recovery rate. In the second
one we use the heterogeneous recovery rate measure introduced in Sect. 3.2. Besides, to
increase our knowledge about the role of each sector in the default propagation process,
we synthetically simulate default problems in each sector to analyze the different spreading
speed in the transient state. Finally, we validate our findings comparing achieved results
with a null model built by rewiring the edges of our network.

5.1 Default incidences for homogeneous recovery rate
We first explore the system response to the default dynamics using the baseline model.
Figure 3 shows the default probability density at the steady state versus the default in-
fection rate β for a default recovery rate of μ = 0.01. For such a small recovery rate the
system behaves almost like a Susceptible–Infected model, still there is a non-zero tran-
sition point from a low default rate to a system-wide default regime. As shown, for high
infectious rates, the system default density is close to 0.20. This means that on average
companies in the customer-supplier network, have a 0.20 probability of being in default
for the set of parameters used.

Figure 4 shows ρ(β ,μ) for each economical sector. Clearly, not all sectors behave in
the same way regarding default dynamics. Broadly speaking, economical sectors can be
grouped in three blocks given its response to default propagation. On one hand, (public)
Institutions, Leisure and unknown sector reference show a low propensity to default prop-
agation, where the sector default probability density range from approximately 0.04 to 0.10
for high infectious rate β . On the other hand, Financial Institutions and Energy evince a
high propensity to default contagion, with ρ reaching almost 0.50. In other words, on av-
erage, each company of these two sectors has a 0.50 probability of being in default for

Figure 3 Recovery rate dependence of the fraction of infected nodes. ρ(β ,μ) for the system with the recovery
rate μ for all network nodes (homogeneous)
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Figure 4 Sectoral recovery rate dependence of the fraction of infected nodes. Sector ρ(β ,μ) distribution when μ

is homogeneous

extreme parameter conditions. In-between, we find the rest of the sectors with density
variations ranging from 0.15 to almost 0.30. Interestingly, the exposure of the economical
sectors is quite different one to another. This result, may allow current risk assessment
models (e.g. Generalized Linear Models, GLM) to include a quantification of sectoral risk
and rank accordingly. In the following sections, we will assess the effect of the recovery rate
variation and explore the reason behind the different sector response to default dynamics.

5.2 Impact of customer diversification on default incidence
In addition, we have compared the customer diversification variation model with a base-
line model having constant default recovery rate μ. We simulate the latter with μ equal to
the mean of μi for the whole network, specifically with μ = 0.005. Consequently, the ho-
mogeneous μ (baseline model) used is 0.01. In our data, initial conditions for the number
of companies in default at t0 are more concentrated in Financial Institutions, 15% (rela-
tive to the sector) and the rest varies with a default rate between 6% and 1%. However, the
MMCA modeling framework does not depend on the initial conditions when the steady
state is reached.

Figure 5 depicts ρ(β ,μ) distribution for each sector using a heterogeneous μi dependent
of the companies customer diversification. Default density ρ increases when it is compared
to the homogeneous μ scenario for all sectors. This means that the inclusion of recovery
heterogeneity make sectors more prone to default. Nevertheless, this effect is likely related
with the Spanish financial network structure, where medium and small companies with
low diversification are predominant in the system (see Fig. 1). This fact produces that most
nodes have small μ values (close to zero), whilst very few companies present μ values close
to 1. However, there are some differences for a few sectors. We will explore the reason
behind the observed dynamic behavior and its connection to the network structure in the
following section.

5.2.1 Sector structure-function relationship
Table 2 summarizes metrics related to the network dynamics and topology for all sec-
tors. The onset slope R0 and the rank according to the sensitivity value for the baseline
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Figure 5 Sectoral recovery rate dependence of the fraction of infected nodes. Sector ρ(β ,μ) distribution when μ

is heterogeneous

Table 2 Summary of network measures influencing dynamic default contagion by sector

Sector γ Iin R0 Srank
het Srank

hom

Energy 1.33 13.44 1.74 1 1
Financial institutions 1.27 2.39 3.81 2 2
Basic materials 1.58 41.07 2.89 3 5
Financial services 1.36 1.66 2.22 4 3
Transportation 1.44 16.27 2.33 5 4
Telecoms, technology & media 1.44 16.99 2.68 6 6
Retailers 1.54 28.18 2.70 7 8
Capital, goods & industrial services 1.47 9.51 2.93 8 9
Utilities 1.44 7.15 3.43 9 7
Autos, components & durable goods 1.52 21.24 2.82 10 10
Retail 1.58 29.80 2.73 11 11
Real estate 1.40 1.86 4.74 12 12
Construction & infrastructure 1.44 17.01 4.25 13 13
Consumer & health care 1.55 32.06 4.10 14 14
Unknown 1.59 5.16 3.69 15 15
Leisure 1.35 7.71 7.56 16 16
Institutions 1.54 5.65 – 17 17

model Srank
hom and for the customer diversification variation Srank

het are shown. Worth noting,
we discarded the R0 value corresponding to Institutions (a sector including governmen-
tal institutions, religious organizations and others public institutions) because there were
very few points, and as a consequence the regression slope is not statistically robust. In
general, it is observed that there are slight variations in the sensitivity ranking but, as seen
on Figs. 4 and 5, the customer diversification has not modified how most of the sectors
are affected by the default dynamics. Also, there is quite a strong inverse relationship be-
tween the onset slope and the sensitivity, indicating that sectors which are susceptible
to be affected are not those prone to propagate the default throughout the system. Main
changes are observed in the basic materials and utility sectors. For example, default sen-
sitivity of basic material companies which have a strong inter-sectoral inter-connectivity
is reduced, showing that these companies have a very diverse customers, therefore mak-
ing them more resistant to default spreading. Here it is important to highlight that the
network only contains business to business relations, therefore sectors whose customers
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are mostly individuals clients have lower probability to spread a default process. Besides,
sectors having a larger number of authorities (nodes highly connected to hubs) exhibit a
larger centrality making them more suitable to spread default problems.

We still lack an explanation of the observed behavior given the topological characteris-
tics of each sector. To do so, we computed the slope coefficient of the inverse cumulative
probability distribution of the companies in-strength for each sector (γ ). The in-strength
is defined as the sum of the incoming normalized weights for each company, meaning
that the higher the value for a company the more probable that the default dynamics will
affect it. As in most complex systems, this probability distribution is heavy-tailed signal-
ing a Pareto like distribution where the slope coefficient can be computed. A smaller γ

value signals that the sector is more probable to contain well connected companies (sector
hubs). We observe that Energy and Financial Institutions are the most susceptible (Srank)
sectors, and coincide with lower values of γ (higher probability of sector hubs). The con-
trary happens to Institutions, and unknown sector reference. This highlights the fact that
hub structures play an important role in the dynamics, and in the extent that a sector is
affected by it. Clearly, leisure does not follow this explanation because it has a middle-
range γ value. This could be due to the fact that it has 76% of its companies with zero
in-strength. However, it is naive to think that only this structural property can explain the
sector response to default dynamics. In Table 2, we can observe how less susceptible sec-
tors are more equally inter-connected to other sectors (larger value of Iin). In practice, this
causes the default spreading to be less likely to find a high probability path to these sec-
tors because their incoming weights are less concentrated. As before, economical sectors
can be grouped in three blocks given its capacity to interact and affect other sectors. On
one hand, energy, financial institutions, financial services, transportation, telecommuni-
cations and retailers sectors are largely affected by the others due to their large sensitivity.
Besides, these sectors are highly inter-connected with all the other sectors since their ac-
tivity is traversal to all sectors and firms, therefore this high degree connectivity allows
default to infect them easily. On the other hand, when consider leisure and unknown sec-
tors, we observe that these are not affected by other sectors. For leisure sector, this is a
consequence that most of its companies have zero in-strength. Similarly, companies be-
longing to the unknown sector are not BBVA clients, so their information is quite limited
and most of their connections are not included in the network having, both, low in and out
degree. In-between, there are sectors, such as (public) institutions and retail, that are sta-
ble independent of the perturbed sector. The main characteristic of these sectors is their
low in-strength due to their customers not being companies or not having customers at
all because they are public entities. In any case, default contagion does not reach these
sectors and they kept healthy in all parameters setting.

Independently of the particular economic insights that may arise from these analysis,
the methodology proposed in this paper has a greater advantage. It allows to perform ex-
periments in a massive way. These large amount of data has enabled us to study how the
time it takes the system to arrive to the steady state (convergence time) depends on a set of
parameters such as the initial default rate or the infection rate β . This may have practical
applications. For instance, if we can establish a relationship between simulations conver-
gence time and real time, the risk departments could take advantage of this understanding
to estimate the speed of default propagation among sectors.
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5.3 Synthetic default assessment experiments
The methodology also allows for another kind of experiments; what we call synthetic de-
fault assessment. Previously, we have performed a sensitivity analysis using the real default
distribution at the initial step. Now we are going to explore what happens when the initial
default nodes are concentrated in a given sector and repeat the analysis for every sector.
Previously, we have focused on the stationary state, where dynamic properties such as S
and R0 were calculated without any dependence on the initial conditions. Now, we are in-
terested in the transient phase, when the system has not reached the stationary state yet.
In this transient phase, we can gain insights on the speed of default propagation among
sectors.

To perform this experiment, we have randomly set different initial default values, specif-
ically, 2%, 4%, 8% and 25% in each sector and no default in the remaining nodes (in the
real data there is an initial default ratio equal to 1.703%, distributed across the sectors).
Although, several experiments were performed, here we only include two of them, the
ones described in Figs. 6 and 7. Simulations show that the moment when the system ar-
rives to the stationary state depends on the initial default values, the infection rate β and
the recovery rate μ. In particular, the larger the recovery rate μ, the faster the system ar-
rives to the stationary state. Note that for initial default values of 25% (Fig. 7) there are no
horizontal lines at iteration 20, indicating that the affected sector is still in the transient
state, since it depends on the perturbed sector. We also observe that there are difference
among sectors. Energy is the sector which first reaches the stationary for all values of the
parameters.

We observe that most of the business sectors follow the tendency that the larger the
number of sectors they affect, the fewer the number of sectors that at the same time are
affecting them. An example can be found in Utilities; for a 25% perturbation all other
sectors except one are affected, while Utilities itself is only affected by another sector (Un-
known sector). Note that this is also the case for Transportation, and seems to be a con-
stant throughout the other sectors. This is opposite to what happens to the sectors Energy
and Financial Institutions, which is affected rapidly by all the other sectors. Knowing the
dependence of the default speed contagion on the business sectors may allow risk assess-
ment models to understand the conditions to react to a sudden perturbation of a sector,
or to an event that may indicate the initial stages of a sector crisis.

5.4 Validation
To study if the topological properties of the customer-supplier network really affect de-
fault contagion, edges were rewired a million times in such a way that nodes kept their
out-degree, in-degree and out-strength using the algorithm described in [45]. Doing this,
25 different networks with different topology were created. In Fig. 8, we present the dif-
ferences of the trimmed mean of ρ as a function of β with regard to the original network
by sector. Specifically, bloxplots were computed using the formula:

�ρs =
|∑P95

n=P5
ρr,n
Nr,s

–
∑P95

n=P5
ρo,n
No,s

|∑P95
n=P5

ρo,n
No,s

, (11)

where Pi, ρr , ρo stand for the ith percentile, node ρ values of the rewired network and ρ

values of the original network respectively. Besides, Nr,s and No,s are the number of nodes
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Figure 6 Sector default time evolution heatmaps (no recovery rate). Sector default time evolution with μ = 0.0,
β = 0.1 and default ratio equal to 8%. Heat maps correspond to the simulation steps number (a) 0, (b) 20 and
(c) 99
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Figure 7 Sector default time evolution heatmaps. Sector default time evolution with μ = 0.5, β = 0.5 and
default ratio equal to 25%. Heat maps correspond to the simulation steps number (a) 0, (b) 3 and (c) 20
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Figure 8 Null model for the sector default distribution. Sector �ρ distribution obtained from rewiring 25 times
client-supplier network with μ = 0.25 and β = 0.5

within percentiles P5 and P95 of the rewired and original network respectively. �ρ values
of Fig. 8 show significant differences between customer-supplier network and the rewire
one. Consequently, this confirms that the customer-supplier network structure plays an
important role in all the aforementioned results.

6 Discussion
The methodology presented in this work applied to a real customer-supplier network
of companies in Spain has allowed to gain new insights on financial data. We confirm
quantitatively that business sector is a key component in default contagion, both in the
strength and in the velocity of the contagion. Specifically we have found three differenti-
ated blocks of behaviors depending on the business sectors. The ability to quantitatively
estimate the size of this effect via topological analysis of the customer-supplier network
demonstrated in this work may allow current risk assessment models to include them
for future default prediction in a systematic way. Nowadays, this effect is only included
from macro-financial data perspective. Therefore, there is a lack of relational informa-
tion at micro-level. Customer-supplier network relations would cover this gap. We have
proven that this dependence happens in at least two different scenarios: when recovery
rate is homogeneous and when it is heterogeneous for every company. However, when
the recovery rate depends on a topological property such as customer diversification, de-
fault contagion increases. This finding may be only a consequence of the structure of the
customer-supplier network in Spain. Further studies could be carried out by using other
country customer-supplier networks, and by using other dependence hypothesis for the
recovery rate. This is where a major advantage of the methodology presented in this work
comes: the ability to vary infection and recovery parameters at the micro-scale and study
the effects on the dynamical properties of the network. For instance, we can base the model
on more economically-wise hypotheses for the recovery rate (or infectious rate) that ac-
count for more realistic scenarios, such as the companies’ revenue, and answer why some
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sectors do not default although they should, provided the structure of the network. This
allows risk experts to study many possible hypothesis. After carrying out a detailed analy-
sis of how different parameters affects default contagion, we have seen that the number of
hub companies a business sector includes is essential to estimate its sensitivity to default
contagion. Although this is not the only variable to take into account, and results can not
be generalized to other customer-supplier networks outside of Spain, we believe this is
a first step towards the study of how the topological properties of the companies in the
network affect default contagion. From a topological perspective, the results of our model
applied to the real data reveal which sectors are more at risk in the propagation of default,
which sectors are more resilient to the default avalanches, and what are the expectations
for the cascades of default under different stochastic conditions. For that purpose, we have
carried out two type of experiments:

• We have analyzed the dynamics of default contagion for different values of the
recovery parameter μ, dependent and non-dependent on the node’s features. Our
methodology allows to tune parameters individually for every company and to carry
out experiments for the simulation of future scenarios. In particular, we have studied
the impact of the company’s customer diversification on default propagation.
A discussion on the connection between topological and dynamical properties is also
included (Sect. 5.2.1);

• Our methodology also allows for another kind of experiment described in Sect. 5.3,
where we have focused on the dynamics of default propagation at the transient state,
and its dependence on the default initial conditions.

7 Conclusions
We have proposed a computational model, based on the probabilities of default conta-
gion, to study the default diffusion at individual and aggregated levels. We have performed
massive experiments based on this model by varying several parameters such as the initial
default rate, the contagion rate β and the recovery rate μ. This methodology allows us to
vary the parameters at the individual level to account for a more realistic scenarios. Our
results show the relationship between dynamical and topological properties for more than
140,000 BBVA firms aggregated at a economic sector level, and also allow us to create a
ranking of sectors by sensitivity to default, which can be used in potential applications. For
future work, we would like to enrich the network adding different types of payments such
as national transfers or direct debits, extending in this way our computational model to a
multiplex network, finally we want to enrich model parameters considering for example
companies’ revenue.
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