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The increasing ubiquity of Internet access and the frequency with which people interact with it raise the
possibility of using the Web to better observe, understand, and monitor several aspects of human social
behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong
to companies or universities, their usage patterns can furnish information about the working habits of entire
populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory
University’s Web site. Emory is a medium-sized university located in Atlanta, Georgia. We find interesting
structure in the activity patterns of the domain and study in a systematic way the main forces behind the
dynamics of the traffic. In particular, we find that linear preferential linking, priority-based queuing, and the
decay of interest for the contents of the pages are the essential ingredients to understand the way users navigate
the Web.
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I. INTRODUCTION

Access to the Internet has become increasingly popular
during the past decade. However, despite its importance,
much is still unknown about the intrinsic properties of the
Web, the way people interact with it, and how it impacts our
culture �1–4�. Several theoretical approaches have been pro-
posed in the past few years �5–12�, but some fundamental
issues are yet to be fully understood. In this work, we will
focus on answering the following question: Do any laws
govern the way and frequency with which a person visits a
given Web site, or is each individual intrinsically unique?
From a sociological point of view, we would expect that,
although the behavior of a single individual is ultimately
personal and unpredictable, many inferences can be obtained
about the most common behaviors �2,13�. A better under-
standing of the way an individual uses a given Web site has
important economic consequences, as it can help the devel-
opers of the site optimize it in a way that facilitates its use,
and monetization. Apart from the utilitarian point of view,
the activity patterns on the sites provide also important in-
formation on the dynamics of a population. The interaction
with electronic devices or virtual instruments, such as social
sites or mobile phones, opens promising research avenues in
this direction �14–20�.

The sheer size and diversity of the World-Wide Web ren-
ders any attempts to characterize it on a global scale barely
feasible. Still several works have recently centered on de-
scribing from a statistical perspective the structure of the
Web �21,22�. If instead of understanding its structure the
goal is to track how users navigate it, the challenge becomes
even greater. A solution consists in ignoring the identity of
the users, focusing only on the number of visitors per site

and on the number of clicks on its hyperlinks �18,23�. An-
other possibility is to concentrate the attention onto a group
of volunteers �24� or onto the users of a social site that are
usually well identified �25–27�. Our aim here is to follow the
activity of individually trackable Web surfers in a relatively
open environment and characterize the way in which the in-
teraction between users and Web sites occurs. This is the
reason why we analyze the logs of the Web server of Emory
University. These logs registered the requests by Internet us-
ers, internal or external, of Web pages in the second level of
the Emory domain �www.emory.edu�. The data comprehend
a period that goes from Apr. 1, 2005 to Jan. 17, 2006. Each
time a computer connects to the Internet, it is assigned a
unique IP address that identifies it. When a user requests a
page from a Web site, the IP, the page requested �URL�, the
time at which the request occurred, and several other details
are registered by the Web server. In our case, to preserve
privacy, the data have been anonymized in a coherent way,
allowing us to follow the behavior of each IP by a single ID
number but masking the real identity. The log structure is
represented schematically in Fig. 1. On the left, we have the
anonymized IP addresses that connect to the URLs on the
right. To avoid the consideration of different elements of a
Web such as photos or logos as independent pages, we have
restricted our definition of URL to (s)htm(l), cfm, php,
asp(x), jsp, and txt documents. Each line of the logs corre-
sponds to a different connection, which is time-stamped with
the date and time at which it took place. During our obser-
vation period, the domain received over 3 million visitors to
about 2.5 million pages, for a grand total of over 53 million
clicks.

II. ACTIVITY PATTERNS OF THE POPULATION

Let us start by taking a view of the collective behavior of
the entire population during the time period for which we
have data. Intuitively, we expect the activity on a domain to
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vary from day to day, week to week, and even month to
month. In particular, it should be possible to observe varia-
tions in the activity, seen as the number of requests, due to
weekends, holidays, and other major events that disrupt the
normal life of the university. The traffic at Emory is domi-
nated by students and professors in the course of their pro-
fessional activities, and hence the major events in the course
of the school year, such as the beginning and end of a se-
mester, breaks, or holidays, should be noticeable in the Web
traffic. In order to check this idea, the number of page re-
quests detected per day is shown in Fig. 2 as a function of
the observation date. One obvious feature of the figure is a
clear oscillatory behavior with a period of one week. It also
displays different trends for two special times of the year:
one at the later part of August, corresponding to the begin-

ning of the school year, and the other at the end of Decem-
ber, when the semester finishes.

Since accesses to the Emory domain are mostly work-
related, traffic can be used as an indirect measure of the
university “productivity.” Busier days would result in larger
amounts of traffic, while during holidays and weekends the
number of page requests is overall smaller, thus rendering
the relative changes in traffic significant. The averages of
page requests by the day of the week during the complete
observation period are plotted, together with their corre-
sponding 95% confidence intervals, in Fig. 3. Our results
support the old adage that after Wednesday, the hardest part
of the week is already behind us, with the activity slowly
decreasing from then on to the weekend. Sundays are the
least active day of the week. It is also interesting to note the
not so active behavior of Mondays, only slightly more active
than Saturdays. Armed with an estimate of how activity
evolves over the week, we are now in a position to evaluate
the effects of a break. In the same figure, we also represent
the data for the days surrounding Thanksgiving, one of the
major holidays in the United States. Traditionally, Thanks-
giving recess goes from Thanksgiving Thursday until Sun-
day, so one might expect any decreases in activity to be most
noticeable during this period. This is what we observe, but
we find other effects as well. Both the Monday before and
after Thanksgiving seem to be less productive than normal.
This is, however, complemented with busier than usual Tues-
days before and after the break.

Intraday variations, with some times of the day being
busier than others, are also seen. By averaging the activity
observed at a given hour over all the weekdays in our data
set, we obtain Fig. 4. The most active period is between 7am
and 6pm. The large dip between 11am and 2pm is due to the
lunch break. After lunch, the activity peaks reach the higher
level of the day. After 6pm, activity levels off until 10pm,
marking the end of the workday. Saturdays do not differ
significantly from other days of the week, only Sundays dis-
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FIG. 2. Total number of clicks registered per day during the
whole period of traffic observation. The gray bands correspond to
the beginning and the end of the semester: from Aug. 16 to Aug. 31,
and from Dec. 16 to Dec. 31.
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FIG. 1. Schematic representation of the interactions between
users and Web pages. The system is dynamic; to provide a more
visual impression of its variability, dashed lines represent new
added connections.
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FIG. 3. �Color online� Comparison between the average week
activity and activity during Thanksgiving week. The green vertical
lines represent the beginning and end of the official Thanksgiving
break at Emory University. The error bars for the average are cal-
culated as two times the standard deviation, 2�, or the 95% confi-
dence interval.
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play a different activity profile. Similar patterns for human
circadian rhythms have been recently reported for other sys-
tems in Refs. �15,17,18�. Such ubiquity indicates important
universal features �profiles� regarding human habits that Web
analytics can help to characterize in a quantitative way.

III. INDIVIDUAL ACTIVITIES

Although interesting, the analysis of averages taken over
the entire population has limitations. The histograms of
single user activity are typically very wide, being in some
cases well-modeled by power-law distributions with expo-
nents smaller than 2 �23�. When this happens, it is difficult to
identify a “typical” user based on such metrics: while most
users only visit the domain sites a few times, a significant
fraction of individuals �as identified by their IP addresses�
accumulate large numbers of page requests. This variability
deserves greater attention since it can carry important infor-
mation. Figure 5 shows the activity patterns of three users.
We do not know the actual IPs, but it is possible to deduce
the intention of the visit based on the particular URL ac-
cessed and on the profile of the activity. In Figs. 5�a� and
5�b�, the users are computer programs. One, the case shown
in �a�, corresponds to a malicious attack on a finance service
Web page of Emory. It took place on April 4th. The profile of
the number of access attempts per unit of time displays a
very peculiar shape, quite regular as occurs for most auto-
matic navigators, with a very high number of requests con-
centrated in a short period of time. Other, more friendly,
robots are those corresponding to updating programs. An ex-
ample can be seen in Fig. 5�b�, where a software site in
Emory is regularly visited presumably in search for new up-
dates. Finally, human users show a very different activity
profile from that of the machines. The activity of a human
user selected at random can be seen in Fig. 5�c�. In this case,
the URL is an administrative site that demands manual intro-
duction of data. The activity congregates in some days fol-
lowed by relatively long periods of time without any request.

Given the strong variability in the activity of human users,
it is interesting to measure some statistics about it. In Fig. 6,
we have represented the histograms of the duration of the
periods between requests for two different scenarios: in Fig.
6�a� for the time between consecutive visits of the same user
to the same URL, P��v�, and, in Fig. 6�b�, for the time be-
tween clicks by the same user to any of the sites in Emory’s
domain �not necessarily to the same URL�, P��c�. Both dis-
tributions are rather wide. The distribution P��c� can be well
fitted by a power-law decaying function of the type P��c�
��c

−1.25. The distribution of time between consecutive visits,
P��v�, decays even more slowly with an exponent of value
−1. This latter value can be understood thanks to a model on
human dynamics recently proposed by Barabási �28� �see
also �17,27,29–31��. In this model, an agent has to perform a
set of tasks each with a random priority assigned. A step
consists in the selection of the task with the highest priority
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FIG. 4. �Color online� Average hourly activity in the complete
Emory domain as a function of the hour of the day. The curves are
averaged over the weekdays �circles�, Saturdays �squares�, and Sun-
days �triangles�.
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FIG. 5. �Color online� Activity history of several individuals: �a�
what seems to be a malicious attack on a finance Web page of the
University, �b� an automatic software update program, and �c� a
human user filling data in an administration site. The red curves
represent the cumulative number of clicks. To facilitate the visual-
ization, the scale of the cumulative and temporal number of clicks is
different. The axis on the right side of each plot displays the scale
for the cumulative number of clicks.
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with probability p or of a random one with probability 1
− p. After the execution, a new task occupies the free spot in
the queue. This group of rules is extremely simple but is able
to reproduce a distribution of waiting times for the tasks in
the queue that, in the limit of small p, decays as �1 /�. It can
be argued that consecutive visits to the same site in Emory
are equivalent to one of these tasks since many of the visits
are related to work or studies, and probably bear an inherent
sense of priority for each user. Also returning immediately to
the same URL and reloading it is not a common practice, at
least not among humans. It is important to note that if the
user pushes the back bottom in the browser, typically we are
not able to detect such a move because it does not leave a
trace in the logs of the server due to browser caching. If each
entrance is seen as a fresh start of a different task, the paral-
lelism between the rules of the model and the way users
return to the same pages can be justified.

The question is then whether there is a way to understand
also the exponent −1.25 of P��c�. The answer is yes, if one
considers that a single click on the domain does not neces-
sarily have to be related to the realization of a task. Many
tasks will require a �fast� sequence of clicks on different sites
of the domain for their completion. This is why we propose
the following modification of the model: in each time step,
instead of a single task, a group of � tasks is selected for

execution. The selection of each of them is done as before:
by priority with probability p, and at random otherwise. We
have performed a systematic numerical study of this model
and found that provided that ��2, the exponent of the dis-
tribution of the time of permanence in the queue decays al-
ways as ��−1.25. An example with �=3 is shown in the inset
of Fig. 6�b�. These two models are oversimplifications but
seem able to capture some of the essential features present in
the dynamics of a large community of users leading to the
existence of universal exponents.

IV. ATTRACTIVENESS AND PREFERENTIAL LINKING

Another aspect that is worth exploring in the dynamics of
our database is whether the new connections or new clicks
follow a preferential rule. Preferential linking or the “rich get
richer” effect is a relatively old concept considered originally
in a socioeconomic context by Simon �32�. In the area of
graphs theory, it was introduced in 1999 �7� with a model
inspired in the hyperlinks of the Web �see also �33,34��. A
few years have passed, and although several attempts have
been made to check the existence of preferential linking in a
variety of systems �26,35–37�, as far as we know, a system-
atic study of preferentiality on the user-Web relationship is
still missing. To be precise, if the variable under consider-
ation, x, can change in time for each element of the system,
it is said that it shows linear preferentiality if the variation
follows on average an expression of the type

��x� � Ax + B , �1�

where the average �.� is taken over all elements i of the
system with xi=x, and A and B are constants. This mecha-
nism supposes that if the update refers to quantities such as
the number of connections or the number of clicks of a site,
the probability that a particular site is chosen to update is
proportional to the number of connections or clicks that it
has previously accumulated. More popular sites concentrate
thus higher attention, leading to an agglomeration process
that, after a while, produces a very wide distribution of val-
ues of x. If the relation of Eq. �1� is linear, the distribution
P�x� can be approached by a decaying power-law function
with an exponent depending on the values of A and B �4�. If
it is not linear, two simple scenarios can occur. Either �x
grows with x faster than linear and the most popular element
will eventually congregate a finite fraction of all the avail-
able value of x, or it is sublinear and the distribution of
values of x will not be wide �stretched exponential instead of
a power law� �4,38,39�.

In our case, the “elements” of the system are Web pages
and IPs, and the quantity x can be, among other things, the
number of clicks of a certain user on a given URL, which we
call w, the number of different users that an URL receives,
kURL, or the number of different sites that an IP visits, kIP. We
have also performed a similar study for the activity of the
URLs and IPs �defined as the number of requests received or
sent�, but the results are similar. We will focus our attention,
therefore, only on kURL, kIP, and w. The variation of each of
these variables �x in a single day is measured after having
accumulated the values of x for a full week. Then an average

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

τ
v

(sec)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P(
τ v)

~ τv
-1

10
2

10
4

10
6

10
-12

10
-8

10
-4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

τ
c

(sec)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P(
τ c)

~ τc
-1.25

~ τc
-1.25

(a)

(b)

FIG. 6. �Color online� Distribution of times between consecu-
tive clicks: �a� visits of the same user to the same URL, and �b� the
same user to any page of the Emory domain. The straight lines
correspond to the power law f�����−1 in �a� and to f�����−1.25 in
�b�. In the inset of �b�, the distribution of time in the queue is
plotted for a variation of Barabási’s model �28� �see text� with a
number of executed tasks per unit of time of �=3, with probability
of choosing a task according to priority p=0.999 99, a total of 100
tasks, and 107 time steps.
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is taken over all the weeks of the database. The results dis-
playing �x as a function of x are depicted in Fig. 7. The
variation of kIP, kURL, and w can be well approached by
linear preferential functions similar to Eq. �1� �straight lines
in the main plots�. This means that the rate at which users
explore the Web ��kIP�, the rate at which popular pages at-

tract new users ��kURL�, and the rate at which users revisit
Web pages ��w� depend linearly on the previous week’s per-
formance. It should also imply that the distributions P�kIP�,
P�kURL�, and P�w� are wide and well fitted by a power law.
In order to check this last point, we have measured the cu-
mulative distributions C�x�=	x

�dyP�y� for the three quanti-
ties. The cumulative distribution C�x� is the probability of
having a value of the variable greater than x and usually
exhibits better statistics than P�x�. Note that if P�x� goes as
P�x��x−�, then C�x��x1−�. The results are shown in the
insets of Fig. 7. In these plots, we have also included the
cumulative distributions estimated aggregating the values of
kURL, kIP, and w for the whole period of the database
�292 days�. The comparison of the cumulative distributions
obtained for the two time windows reveals an important sur-
prise. For C�kIP�, the two curves overlap and can be fitted
with a power law of exponent ��2.2. However, this is not
true for the popularity of the URLs, kURL, or for w. This
difference in the output depending on the extension of the
time window has important consequences for modeling the
dynamics of the system. Its origin is related to the fact that in
a university, the time during which a site, or more specifi-
cally its content, is relevant closely tracks the evolution of
the academic year. In general, a similar rule should apply to
all the Web sites. The lifetime can be more flexible, depend-
ing also on the number of visitors, but a certain loss of in-
terest as time passes after the first online publication can be
expected �12�. After this time, the page does not attract new
users or visits from the old ones at the same rhythm �if it
attracts any at all�. This breaks one of the implicit assump-
tions of preferential linking: new elements are added at a
constant rate, while the old ones keep attracting attention
indefinitely. It also implies that linear preferential linking is
not valid for longer time windows for kURL and w, and that
their distributions cannot be modeled as simple �stable over
time windows� power laws.

To visualize the life story of URLs, we represent in Fig. 8
the number of pages first seen or last seen in the system as a
function of time. We will say that a certain URL U is first
seen at time t if it receives its first request at t. Complemen-
tarity, the time in which U is last seen, disappearing from the
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FIG. 7. �Color online� �a� Average variation in a single day of
the number of different visited sites, ��kIP�, as a function of the
number of sites already seen during the previous week, kIP. �b� The
same type of function but for the number of visitors to a URL,
��kURL�. �c� The average day variation of the number of clicks on
each connection IP-URL as a function of the clicks accumulated
during the previous week, ��w��w�. The insets display the cumula-
tive distributions for each quantity, the black curves are obtained by
splitting the database in one-week periods and averaging over all of
them, while the red ones are the distributions for the full 292-day
period.
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HUMAN DYNAMICS REVEALED THROUGH WEB ANALYTICS PHYSICAL REVIEW E 78, 026123 �2008�

026123-5



database, is when it receives the last registered visit. Note
that, although similar in look, this plot is different from Fig.
2, where we plot the activity measured as the total number of
clicks on the Emory domain as a function of time. Two large
peaks can be seen in Fig. 8. The time of these peaks coin-
cides with the end and beginning of the semester. Many Web
pages seem thus to have a relatively short life, probably be-
ing set up by professors or students who abandon them at the
end of the semester. In many cases, even the http addresses
are no longer maintained.

V. DISCUSSION AND CONCLUSIONS

Web server logs have proven to be an important source of
information regarding human dynamics. Here we have of-
fered an extensive study on the medium-sized Web domain
of Emory University, tracking the users in a consistent way
for 292 days. A clear signal of human circadian rhythms has
been obtained as well as activity patterns that seem to be
universal since they are in agreement with previous results
on mobile phone records or email posting in social sites. In
addition, by comparing the traffic of an ideal average week
with the week containing Thanksgiving, we have shown how
major holidays induce changes in the structure of the activity
of the whole population, not only during the vacation time
but also days before and after. Some of these days concen-
trate an important level of activity, much higher than the
usual one, and others fall quite behind.

After the characterization of activity at the whole univer-
sity scale, we moved our focus to the study of statistics of
single users. The difference in the navigation patterns be-
tween humans and automatic processes, either malicious or
friendly, has been highlighted. Humans are in general more
unpredictable, although a similar behavior might be repro-
duced by sophisticated automatic means. In particular, for

human users, it is important to analyze the statistics of the
times between events �clicks� and compare them with re-
cently introduced models based on priority queues. We have
shown that indeed such models are able to explain the inter-
clicks period distribution if the dyad user-site is considered.
Furthermore, a simple modification, in which the number of
tasks to execute in a short interval of time is higher than one,
can also account for the statistics of times between requests
of the same user on the whole Emory domain.

Finally, we have explored another mechanism that has
been proposed as an important ingredient in the development
of the WWW, namely “preferential attachment.” Linear pref-
erential attractiveness is detected in all aspects of the traffic
contemplated: the rate of exploration of new sites by users,
the capture of new visitors by the sites, or the new clicks
received on each connection user-Web page. In all these
cases, the linear relation holds for a short period of time. For
longer periods, the lifetime of the Web pages must be taken
into account, complicating substantially the scenario. Prefer-
ential linking, priority queuing, and Web page aging seem
thus to be essential factors for any model aimed at charac-
terizing Web surfing.
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